• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • Tagged with
  • 14
  • 14
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Effective Use of Network Coding in Multi-hop Wireless Networks

Chi, Yang January 2013 (has links)
No description available.
12

Analytical Model for Capacity and Delay Optimization in Wireless Mesh Networks

Fu, Weihuang January 2010 (has links)
No description available.
13

Interference-aware adaptive spectrum management for wireless networks using unlicensed frequency bands

Pediaditaki, Sofia January 2012 (has links)
The growing demand for ubiquitous broadband network connectivity and continuously falling prices in hardware operating on the unlicensed bands have put Wi-Fi technology in a position to lead the way in rapid innovation towards high performance wireless for the future. The success story of Wi-Fi contributed to the development of widespread variety of options for unlicensed access (e.g., Bluetooth, Zigbee) and has even sparked regulatory bodies in several countries to permit access to unlicensed devices in portions of the spectrum initially licensed to TV services. In this thesis we present novel spectrum management algorithms for networks employing 802.11 and TV white spaces broadly aimed at efficient use of spectrum under consideration, lower contention (interference) and high performance. One of the target scenarios of this thesis is neighbourhood or citywide wireless access. For this, we propose the use of IEEE 802.11-based multi-radio wireless mesh network using omnidirectional antennae. We develop a novel scalable protocol termed LCAP for efficient and adaptive distributed multi-radio channel allocation. In LCAP, nodes autonomously learn their channel allocation based on neighbourhood and channel usage information. This information is obtained via a novel neighbour discovery protocol, which is effective even when nodes do not share a common channel. Extensive simulation-based evaluation of LCAP relative to the state-of-the-art Asynchronous Distributed Colouring (ADC) protocol demonstrates that LCAP is able to achieve its stated objectives. These objectives include efficient channel utilisation across diverse traffic patterns, protocol scalability and adaptivity to factors such as external interference. Motivated by the non-stationary nature of the network scenario and the resulting difficulty of establishing convergence of LCAP, we consider a deterministic alternative. This approach employs a novel distributed priority-based mechanism where nodes decide on their channel allocations based on only local information. Key enabler of this approach is our neighbour discovery mechanism. We show via simulations that this mechanism exhibits similar performance to LCAP. Another application scenario considered in this thesis is broadband access to rural areas. For such scenarios, we consider the use of long-distance 802.11 mesh networks and present a novel mechanism to address the channel allocation problem in a traffic-aware manner. The proposed approach employs a multi-radio architecture using directional antennae. Under this architecture, we exploit the capability of the 802.11 hardware to use different channel widths and assign widths to links based on their relative traffic volume such that side-lobe interference is mitigated. We show that this problem is NP-complete and propose a polynomial time, greedy channel allocation algorithm that guarantees valid channel allocations for each node. Evaluation of the proposed algorithm via simulations of real network topologies shows that it consistently outperforms fixed width allocation due to its ability to adapt to spatio-temporal variations in traffic demands. Finally, we consider the use of TV-white-spaces to increase throughput for in-home wireless networking and relieve the already congested unlicensed bands. To the best of our knowledge, our work is the first to develop a scalable micro auctioning mechanism for sharing of TV white space spectrum through a geolocation database. The goal of our approach is to minimise contention among secondary users, while not interfering with primary users of TV white space spectrum (TV receivers and microphone users). It enables interference-free and dynamic sharing of TVWS among home networks with heterogeneous spectrum demands, while resulting in revenue generation for database and broadband providers. Using white space availability maps from the UK, we validate our approach in real rural, urban and dense-urban residential scenarios. Our results show that our mechanism is able to achieve its stated objectives of attractiveness to both the database provider and spectrum requesters, scalability and efficiency for dynamic spectrum distribution in an interference-free manner.
14

Comparative Analysis of Performance Routing Metrics for Multi-radio Wireless Mesh Networks

Ivo, Akum Nji January 2008 (has links)
Traditional Ad Hoc network wireless communication in the past years have contributed tremendously to the dawn of wireless mesh networks (WMNs) which have so far been able to provide a significant improvement in capacity and scalability. Routing metrics which form the basic element for the routing protocol in this innovative communication technology is a call for concern as they must take into consideration the wireless medium network characteristics in order to provide a optimum appreciable QoS performance. In the past many single-radio routing metrics have been proposed for Ad Hoc networks which are not compatible with the multi-radio routing scenario demanded by WMNs. In our work, we provide a comparative analysis of most recently proposed multi-radio routing metrics for WMNs. We begin by providing an overview of the features of a wireless mesh network thereby presenting a better understanding of some of the research challenges of WMNs. Also, since single-radio routing forms the basis of multi-radio routing, we in this regard provide a review of some single-radio routing metrics. In our comparative analysis, an overview of routing protocols for WMNs is provided enabling an understanding of the demands to be included in a routing metric to ensure efficient routing in WMNs since different routing protocols may impose different demands; we then identify the requirements of multi-radio routing metrics from which we base our comparative analysis.

Page generated in 0.045 seconds