• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • 1
  • Tagged with
  • 18
  • 18
  • 18
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

AUTOMATED CLASSIFICATION OF POWER QUALITY DISTURBANCES USING SIGNAL PROCESSING TECHNIQUES AND NEURAL NETWORKS

Settipalli, Praveen 01 January 2007 (has links)
This thesis focuses on simulating, detecting, localizing and classifying the power quality disturbances using advanced signal processing techniques and neural networks. Primarily discrete wavelet and Fourier transforms are used for feature extraction, and classification is achieved by using neural network algorithms. The proposed feature vector consists of a combination of features computed using multi resolution analysis and discrete Fourier transform. The proposed feature vectors exploit the benefits of having both time and frequency domain information simultaneously. Two different classification algorithms based on Feed forward neural network and adaptive resonance theory neural networks are proposed for classification. This thesis demonstrates that the proposed methodology achieves a good computational and error classification efficiency rate.
12

Efficient Image Processing Techniques for Enhanced Visualization of Brain Tumor Margins

Koglin, Ryan W. January 2014 (has links)
No description available.
13

Road Extraction From High Resolution Satellite Images Using Adaptive Boosting With Multi-resolution Analysis

Cinar, Umut 01 September 2012 (has links) (PDF)
Road extraction from satellite or aerial imagery is a popular topic in remote sensing, and there are many road extraction algorithms suggested by various researches. However, the need of reliable remotely sensed road information still persists as there is no sufficiently robust road extraction algorithm yet. In this study, we explore the road extraction problem taking advantage of the multi-resolution analysis and adaptive boosting based classifiers. That is, we propose a new road extraction algorithm exploiting both spectral and structural features of the high resolution multi-spectral satellite images. The proposed model is composed of three major components / feature extraction, classification and road detection. Well-known spectral band ratios are utilized to represent reflectance properties of the data whereas a segmentation operation followed by an elongatedness scoring technique renders structural evaluation of the road parts within the multi-resolution analysis framework. The extracted features are fed into Adaptive Boosting (Adaboost) learning procedure, and the learning method iteratively combines decision trees to acquire a classifier with a high accuracy. The road network is identified from the probability map constructed by the classifier suggested by Adaboost. The algorithm is designed to be modular in the sense of its extensibility, that is / new road descriptor features can be easily integrated into the existing model. The empirical evaluation of the proposed algorithm suggests that the algorithm is capable of extracting majority of the road network, and it poses promising performance results.
14

Segmentation and structuring of video documents for indexing applications

Tapu, Ruxandra Georgina 07 December 2012 (has links) (PDF)
Recent advances in telecommunications, collaborated with the development of image and video processing and acquisition devices has lead to a spectacular growth of the amount of the visual content data stored, transmitted and exchanged over Internet. Within this context, elaborating efficient tools to access, browse and retrieve video content has become a crucial challenge. In Chapter 2 we introduce and validate a novel shot boundary detection algorithm able to identify abrupt and gradual transitions. The technique is based on an enhanced graph partition model, combined with a multi-resolution analysis and a non-linear filtering operation. The global computational complexity is reduced by implementing a two-pass approach strategy. In Chapter 3 the video abstraction problem is considered. In our case, we have developed a keyframe representation system that extracts a variable number of images from each detected shot, depending on the visual content variation. The Chapter 4 deals with the issue of high level semantic segmentation into scenes. Here, a novel scene/DVD chapter detection method is introduced and validated. Spatio-temporal coherent shots are clustered into the same scene based on a set of temporal constraints, adaptive thresholds and neutralized shots. Chapter 5 considers the issue of object detection and segmentation. Here we introduce a novel spatio-temporal visual saliency system based on: region contrast, interest points correspondence, geometric transforms, motion classes' estimation and regions temporal consistency. The proposed technique is extended on 3D videos by representing the stereoscopic perception as a 2D video and its associated depth
15

Simulation of Physiological Signals using Wavelets

Bhojwani, Soniya Naresh January 2007 (has links)
No description available.
16

Contribution à l'analyse et à la recherche d'information en texte intégral : application de la transformée en ondelettes pour la recherche et l'analyse de textes / Contribution in analysis and information retrieval in text : application of wavelets transforms in information retrieval

Smail, Nabila 27 January 2009 (has links)
L’objet des systèmes de recherche d’informations est de faciliter l’accès à un ensemble de documents, afin de permettre à l’utilisateur de retrouver ceux qui sont pertinents, c'est-à-dire ceux dont le contenu correspond le mieux à son besoin en information. La qualité des résultats de la recherche se mesure en comparant les réponses du système avec les réponses idéales que l'utilisateur espère recevoir. Plus les réponses du système correspondent à celles que l'utilisateur espère, plus le système est jugé performant. Les premiers systèmes permettaient d’effectuer des recherches booléennes, c’est à dire, des recherches ou seule la présence ou l’absence d’un terme de la requête dans un texte permet de le sélectionner. Il a fallu attendre la fin des années 60, pour que l’on applique le modèle vectoriel aux problématiques de la recherche d’information. Dans ces deux modèles, seule la présence, l’absence, ou la fréquence des mots dans le texte est porteuse d’information. D’autres systèmes de recherche d’information adoptent cette approche dans la modélisation des données textuelles et dans le calcul de la similarité entre documents ou par rapport à une requête. SMART (System for the Mechanical Analysis and Retrieval of Text) [4] est l’un des premiers systèmes de recherche à avoir adopté cette approche. Plusieurs améliorations des systèmes de recherche d’information utilisent les relations sémantiques qui existent entre les termes dans un document. LSI (Latent Semantic Indexing) [5], par exemple réalise ceci à travers des méthodes d’analyse qui mesurent la cooccurrence entre deux termes dans un même contexte, tandis que Hearst et Morris [6] utilisent des thésaurus en ligne pour créer des liens sémantiques entre les termes dans un processus de chaines lexicales. Dans ces travaux nous développons un nouveau système de recherche qui permet de représenter les données textuelles par des signaux. Cette nouvelle forme de représentation nous permettra par la suite d’appliquer de nombreux outils mathématiques de la théorie du signal, tel que les Transformées en ondelettes et jusqu’a aujourd’hui inconnue dans le domaine de la recherche d’information textuelle / The object of information retrieval systems is to make easy the access to documents and to allow a user to find those that are appropriate. The quality of the results of research is measured by comparing the answers of the system with the ideal answers that the user hopes to find. The system is competitive when its answers correspond to those that the user hopes. The first retrieval systems performing Boolean researches, in other words, researches in which only the presence or the absence of a term of a request in a text allow choosing it. It was necessary to wait for the end of the sixties to apply the vector model in information retrieval. In these two models, alone presence, absence, or frequency of words in the text is holder of information. Several Information Retrieval Systems adopt a flat approach in the modeling of data and in the counting of similarity between documents or in comparison with a request. We call this approach ‘bag of words ’. These systems consider only presence, absence or frequency of appearance of terms in a document for the counting of its pertinence, while Hearst and Morris [6] uses online thesaurus to create semantic links between terms in a process of lexical chains. In this thesis we develop a new retrieval system which allows representing textual data by signals. This new form of presentation will allow us, later, to apply numerous mathematical tools from the theory of the signal such as Wavelets Transforms, well-unknown nowadays in the field of the textual information retrieval
17

Segmentation and structuring of video documents for indexing applications / Segmentation et structuration de documents video pour l'indexation

Tapu, Ruxandra Georgina 07 December 2012 (has links)
Les progrès récents en matière de télécommunications, collaboré avec le développement des dispositifs d'acquisition d’images et de vidéos a conduit à une croissance spectaculaire de la quantité des données vidéo stockées, transmises et échangées sur l’Internet. Dans ce contexte, l'élaboration d'outils efficaces pour accéder aux éléments d’information présents dans le contenu vidéo est devenue un enjeu crucial. Dans le Chapitre 2 nous introduisons un nouvel algorithme pour la détection de changement de plans vidéo. La technique est basée sur la partition des graphes combinée avec une analyse multi-résolution et d'une opération de filtrage non-linéaire. La complexité globale de calcul est réduite par l’application d'une stratégie deux passes. Dans le Chapitre 3 le problème d’abstraction automatique est considéré. Dans notre cas, nous avons adopté un système de représentation image-clés qui extrait un nombre variable d'images de chaque plan vidéo détecté, en fonction de la variation du contenu visuel. Le Chapitre 4 traite la segmentation de haut niveau sémantique. En exploitant l'observation que les plans vidéo appartenant à la même scène ont les mêmes caractéristiques visuelles, nous introduisons un nouvel algorithme de regroupement avec contraintes temporelles, qui utilise le seuillage adaptatif et les plans vidéo neutralisés. Dans le Chapitre 5 nous abordons le thème de détection d’objets vidéo saillants. Dans ce contexte, nous avons introduit une nouvelle approche pour modéliser l'attention spatio-temporelle utilisant : la correspondance entre les points d'intérêt, les transformations géométriques et l’estimation des classes de mouvement / Recent advances in telecommunications, collaborated with the development of image and video processing and acquisition devices has lead to a spectacular growth of the amount of the visual content data stored, transmitted and exchanged over Internet. Within this context, elaborating efficient tools to access, browse and retrieve video content has become a crucial challenge. In Chapter 2 we introduce and validate a novel shot boundary detection algorithm able to identify abrupt and gradual transitions. The technique is based on an enhanced graph partition model, combined with a multi-resolution analysis and a non-linear filtering operation. The global computational complexity is reduced by implementing a two-pass approach strategy. In Chapter 3 the video abstraction problem is considered. In our case, we have developed a keyframe representation system that extracts a variable number of images from each detected shot, depending on the visual content variation. The Chapter 4 deals with the issue of high level semantic segmentation into scenes. Here, a novel scene/DVD chapter detection method is introduced and validated. Spatio-temporal coherent shots are clustered into the same scene based on a set of temporal constraints, adaptive thresholds and neutralized shots. Chapter 5 considers the issue of object detection and segmentation. Here we introduce a novel spatio-temporal visual saliency system based on: region contrast, interest points correspondence, geometric transforms, motion classes’ estimation and regions temporal consistency. The proposed technique is extended on 3D videos by representing the stereoscopic perception as a 2D video and its associated depth
18

Wavelet analysis of financial time series / Analyse en ondelettes des séries temporelles financières

Khalfaoui, Rabeh 23 October 2012 (has links)
Cette thèse traite la contribution des méthodes d'ondelettes sur la modélisation des séries temporelles économiques et financières et se compose de deux parties: une partie univariée et une partie multivariée. Dans la première partie (chapitres 2 et 3), nous adoptons le cas univarié. Premièrement, nous examinons la classe des processus longue mémoire non-stationnaires. Une étude de simulation a été effectuée afin de comparer la performance de certaines méthodes d'estimation semi-paramétrique du paramètre d'intégration fractionnaire. Nous examinons aussi la mémoire longue dans la volatilité en utilisant des modèles FIGARCH pour les données de l'énergie. Les résultats montrent que la méthode d'estimation Exact Local Whittle de Shimotsu et Phillips [2005] est la meilleure méthode de détection de longue mémoire et la volatilité du pétrole exhibe une forte évidence de phénomène de mémoire longue. Ensuite, nous analysons le risque de marché des séries de rendements univariées de marchés boursier, qui est mesurée par le risque systématique (bêta) à différents horizons temporels. Les résultats montrent que le Bêta n'est pas stable, en raison de multi-trading stratégies des investisseurs. Les résultats basés sur l'analyse montrent que le risque mesuré par la VaR est plus concentrée aux plus hautes fréquences. La deuxième partie (chapitres 4 et 5) traite l'estimation de la variance et la corrélation conditionnelle des séries temporelles multivariées. Nous considérons deux classes de séries temporelles: les séries temporelles stationnaires (rendements) et les séries temporelles non-stationnaires (séries en niveaux). / This thesis deals with the contribution of wavelet methods on modeling economic and financial time series and consists of two parts: the univariate time series and multivariate time series. In the first part (chapters 2 and 3), we adopt univariate case. First, we examine the class of non-stationary long memory processes. A simulation study is carried out in order to compare the performance of some semi-parametric estimation methods for fractional differencing parameter. We also examine the long memory in volatility using FIGARCH models to model energy data. Results show that the Exact local Whittle estimation method of Shimotsu and Phillips [2005] is the better one and the oil volatility exhibit strong evidence of long memory. Next, we analyze the market risk of univariate stock market returns which is measured by systematic risk (beta) at different time horizons. Results show that beta is not stable, due to multi-trading strategies of investors. Results based on VaR analysis show that risk is more concentrated at higher frequency. The second part (chapters 4 and 5) deals with estimation of the conditional variance and correlation of multivariate time series. We consider two classes of time series: the stationary time series (returns) and the non-stationary time series (levels). We develop a novel approach, which combines wavelet multi-resolution analysis and multivariate GARCH models, i.e. the wavelet-based multivariate GARCH approach. However, to evaluate the volatility forecasts we compare the performance of several multivariate models using some criteria, such as loss functions, VaR estimation and hedging strategies.

Page generated in 0.0843 seconds