• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 5
  • 5
  • 1
  • 1
  • Tagged with
  • 44
  • 44
  • 10
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Microalgae - future bioresource of the sea?

Olofsson, Martin January 2015 (has links)
Unicellular microalgae are a renewable bioresource that can meet the challenge forfood and energy in a growing world population. Using sunlight, CO2, nutrients,and water, algal cells produce biomass in the form of sugars, proteins and oils, allof which carry commercial value as food, feed and bioenergy. Flue gas CO2 andwastewater nutrients are inexpensive sources of carbon and fertilizers. Microalgaecan mitigate CO2 emissions and reduce nutrients from waste streams whileproducing valuable biomass.My focus was on some of the challenging aspects of cultivating microalgae ascrop: the response of biomass production and quality to seasonality, nutrients andbiological interactions. Approach spans from laboratory experiments to large-scaleoutdoor cultivation, using single microalgal strains and natural communities insouthern (Portugal) and northern (Sweden) Europe.Half of the seasonal variation in algal oil content was due to changes in light andtemperature in outdoor large-scale cultures of a commercial strain (Nannochloropsisoculata). Seasonal changes also influence algal oil composition with more neutrallipids stored in cells during high light and temperature. Nitrogen (N) stress usuallyenhances lipid storage but suppresses biomass production. Our manipulationshowed that N stress produced more lipids while retaining biomass. Thus,projecting annual biomass and oil yields requires accounting for both seasonalchanges and N stress to optimize lipid production in commercial applications.Baltic Sea microalgae proved to be a potential biological solution to reduce CO2emissions from cement flue gas with valuable biomass production. A multi-speciescultivation approach rather than single-species revealed that natural or constructedcommunities of microalgae can produce equivalent biomass quality. Diversecommunities of microalgae can offer resilience and stability due to more efficientresource utilization with less risk of contamination, less work and cost for culturemaintenance.Stable algal biomass production (annual basis) was achieved in outdoor pilot-scale(1600 L) cultivation of Baltic Sea natural communities using cement flue gas as aCO2 source. Results indicate favorable algal oil content at northern Europeanlatitudes compared to southern European latitudes.My thesis establishes the potential of cultivating microalgae as a bioresource inScandinavia, and using a community approach may be one step towardssustainable algal technology.
12

Cost-effective Conservation Planning for Species at Risk in Saskatchewan’s Milk River Watershed: The Efficiency Gains of a Multi-species Approach

Entem, Alicia R Unknown Date
No description available.
13

Cover crops for soil health and forage

Davis, Cathryn Joyce January 1900 (has links)
Master of Science / Department of Agronomy / DeAnn R. Presley / Cover crops have numerous benefits and while cover crops have been used for centuries, currently there are few producers in Kansas growing them and so there is a need for additional research on how cover crops affect soil properties, and on the potential for utilizing cover crops as forage. Two studies are presented in this thesis. The first study evaluated the use of cover crops in a vegetable production system as compared to a fully tilled control. This study evaluated soil physical properties in the form of wet aggregate stability and infiltration, and microbial properties by soil microbial biomass carbon (MBC). Over the three year study, the most pronounced differences observed were in the wet aggregate stability between the cover crop and control treatments where the cover crop treatments had better soil aggregation compared to the control. At the conclusion of the study, there was not a difference between fall and spring planted cover crop treatments. The second study evaluates species composition and forage quality of various combinations of multi-species cover crop mixtures. This study evaluated sixteen treatments, each consisting of a three-way mixture of a brassica (turnip or radish), grass (rye, wheat, barley, oat), and a legume (berseem clover or Austrian winter pea). Species composition analysis found that the brassica species dominated the mixtures (60-80% by mass on a dry weight basis) in 2014 while the grass species were dominant (62 – 67%) in 2015. Overall all treatments produced prime quality forage (as compared to hay values), however some treatments cost significantly more to plant than others. Therefore an economic analysis compared the treatments and found that the treatments containing turnips and oats generally provided the best return on investment given that both of these species were among the cheapest to plant and produced moderate to high biomass compared to the other treatments. The results of these projects point to the potential benefits that cover crops can have for producers interested in improving soil or utilizing cover crops for forage.
14

Développement de deux instruments LIDAR multi-longueurs d'onde et multi-espèces à base de sources paramétriques / Development of two multi-wavelengths and multi-species LIDAR instruments based on parametric sources

Pellegrino, Jessica 01 December 2014 (has links)
La surveillance globale de l’atmosphère et de la pollution de l’air est devenue un enjeu majeur ces dernières années afin d’estimer les conséquences des activités humaines sur notre environnement. Au cours de ces travaux de thèse, l’objectif a été de développer deux instruments LIDARs en détection directe basés sur des émetteurs multi-longueurs d’onde et multi-espèces mettant en œuvre des sources paramétriques optiques innovantes basées sur la technologie NesCOPO (nested cavity optical parametric oscillator) afin de répondre à deux applications : le suivi de la qualité de l’air sur sites industriels et le suivi des gaz à effet de serre depuis l’espace. Un premier instrument multi-espèces a été développé dans le cadre du suivi de la qualité de l’air sur sites industriels, dans la gamme spectrale 3,3 à 3,8 µm, et dédié à des mesures de concentrations moyennes le long de la ligne de visée pour des portées de l’ordre de la centaine de mètres. Une démonstration du potentiel multi-espèces de l’instrument a été réalisée en mesurant simultanément les concentrations en méthane et en vapeur d’eau atmosphériques. A partir d’une source optique existante dédiée à la mesure du dioxyde de carbone seul, un second émetteur multi-longueurs d’onde et multi-espèces a été développé dans une gamme spectrale autour de 2 µm. Son potentiel pour la mesure des gaz à effets de serre depuis l’espace a été étudié En particulier, nous avons démontré que cet émetteur permet de mesurer trois gaz atmosphériques : CO2, H2O et CH4. Une architecture globale d’instrument intégrant cet émetteur a été proposée, afin de réaliser des mesures résolues spatialement, avec des portées de quelques km. De plus, un code de simulation a été développé pour estimer les performances de cet instrument en détection directe. / Atmospheric global monitoring and air quality are major environmental concerns. Global monitoring of some trace and green-house gases would help to understand the consequences of human activities on our environment. The aim of this work is to develop two multi-wavelengths and multi-species direct detection lidar instruments, based on the same laser transmitter baseline approach - an innovative parametric source, the Nested Cavity optical parametric oscilator-and to target two applications: the monitoring of air quality on industrial sites and the monitoring of greenhouse gases from space. The first instrument was designed for industrial plant monitoring applications, in the 3.3-3.8µm, and allows the measurement of multi-species mean concentrations along the line of sight, over a range of around a hundred meters. This instrument was implemented for simultaneous measurements of atmospheric methane and water vapour.The second instrument targets the green-house gases measurement from space applications. In this frame, a new multi-wavelengths and multi-species emitter was developed at 2 µm for space applications. We have demonstrated that this new emitter could address three species: carbon dioxide, water vapor and methane, and studied his potential for space-borne applications.. The architecture of a complete range-resolved instrument based on this transmitter was proposed. Moreover, a numerical algorithm was developed to estimate the instrument’s performances with a direct detection scheme.
15

Dynamic Multi-species Animal Habitat Modeling with Forest Succession Models

Compton, Stephen A. 01 May 1992 (has links)
This research determines and demonstrates the ability to simulate dynamic multispecies animal habitat suitability with forest succession models. A literature review of dynamic animal habitat models is presented. The structure of an existing forest simulation model (MASS10) was modified from a basal area-based model to a volume-based model (DYNAM10). The forest model was calibrated using data from permanent-plot growth and vegetation samples collected by USDA Forest Service Forest Survey procedures. The theoretical growth parameters used to simulate stand development were validated. Predictions of DBH and height growth, as well as stand-level behavior, were verified. A subroutine, VEGDYN, was added to DYNAMlO to simulate 34 structural vegetation parameters required by animal Habitat Suitability Index (HSI) models. Predictions of the structural parameters were verified. Ten animal-species HSI models were linked to DYNAMlO via the program HSI.FOR, and predicted dynamic HSI values were verified by hand-calculation. Typical patterns of dynamic HSI predictions are presented and discussed.
16

Can Spiders (Argiope Aurantia) Indirectly Affect the Fitness of Orange Coneflowers (Rudbeckia Fulgida) by Limiting Pollinator Visitation?

Wu, Andrew 17 August 2012 (has links)
No description available.
17

An ORISE Fellowship with the U.S. EPA: Advanced Water Quality Modeling for Water Security

Hagar, Jennifer Linn 26 August 2011 (has links)
No description available.
18

Development and validation of a computational model for a proton exchange membrane fuel cell

Siegel, Nathan Phillip 17 February 2004 (has links)
A steady-state computational model for a proton exchange membrane fuel cell (PEMFC) is presented. The model accounts for species transport, electrochemical kinetics, energy transport, current distribution, water uptake and release within the polymer portion of the catalyst layers, and liquid water production and transport. Both two-dimensional and three-dimensional geometries are modeled. For a given geometry, the governing differential equations are solved over a single computational domain. For the two-dimensional model, the solution domain includes a gas channel, gas diffusion layer, and catalyst layer for both the anode and cathode sides of the cell as well as the solid polymer membrane. For the three-dimensional model the current collectors are also modeled on both the anode and cathode sides of the fuel cell. The model for the catalyst layers is based on an agglomerate geometry, which requires water species to exist in dissolved, gaseous, and liquid forms simultaneously. Data related to catalyst layer morphology that was required by the model was obtained via a physical analysis of both commercially available and in-house membrane electrode assemblies (MEA). Analysis techniques including cyclic voltammetry and electron microscopy were used. The coupled set of partial differential equations is solved sequentially over a single solution domain with the commercial computational fluid dynamics (CFD) solver, CFDesign™ and is readily adaptable with respect to geometry and material property definitions. A fuel cell test stand was designed and built to facilitate experimental validation of the model. The test stand is capable of testing cells up to 50 cm2 under a variety of controlled conditions. Model results for both two and three-dimensional fuel cell geometries are presented. Parametric studies performed with the model are also presented and illustrate how fuel cell performance varies due to changes in parameters associated with the transport of reactants and liquid water produced in the cell. In particular, the transport of oxygen, water within the polymer portions of the catalyst layers and membrane, and liquid water within the porous regions of the cell are shown to have significant impact on cell performance, especially at low cell voltage. Parametric studies also address the sensitivity of the model results to certain physical properties, which illustrates the importance of accurately determining the physical properties of the fuel cell components on which the model is based. The results from the three-dimensional model illustrate the impact of the collector plate shoulders (for a conventional flowfield) on oxygen transport and the distribution of current production within the cell. / Ph. D.
19

Investigating single and multiple species fisheries management: stock status evaluation of hammerhead (Sphyrna spp.) sharks in the western North Atlantic Ocean and Gulf of Mexico

Hayes, Christopher Glenn 07 February 2008 (has links)
Three hammerhead sharks (Sphyrna spp.) are currently managed as part of the large coastal shark complex in the United States. Including multiple species in an assessment ignores the different stock dynamics of each individual species within the complex due to different life histories. This study completed individual assessments of scalloped (S. lewini), great (S. mokarran), and smooth (S. zygaena) hammerhead sharks in the U.S. Atlantic Ocean and Gulf of Mexico. Combined data for all three species and unclassified hammerhead sharks were also used to produce a stock assessment of the hammerhead shark complex. Depletions of 83%, 96%, and 91% were estimated for scalloped, great, and smooth hammerhead sharks, respectively, between 1981 and 2005. When modeled as a single stock, the hammerhead shark complex experienced a 90% decline over the same time period. All three stocks, and the complex were overfished (below population size associated with maximum sustainable yield (MSY)), and overfishing (fishing level above that associated with MSY) occurred in 2005. We found that scalloped hammerhead shark population recovery is likely to occur within 10 years if catch remains at or below 2005 levels. Great and smooth hammerhead sharks will likely still be overfished in 30 years unless catches are reduced. It appears that the species composition could be changing in this hammerhead shark complex. The faster-growing scalloped hammerhead sharks are able to withstand fishing pressure better than great or smooth hammerhead sharks. However, it is difficult to target any single large coastal shark species while fishing; hence they are subject to similar fishing pressure. The result is a greater decline in great and smooth hammerhead sharks than experienced by scalloped hammerhead sharks. Therefore, the proportion of scalloped hammerhead sharks increased between 1981 and 2005. Species-specific stock assessments, such as those presented here, allow managers to more closely monitor populations of slower-growing species and reduce the risk of overexploitation of those species. / Master of Science
20

The ecosystem services of the Cerrado trees : modelling, distribution mapping and implications for conservation

Mesa, Christian Requena January 2017 (has links)
O interesse em valorizar os serviços ecossistêmicos fornecidos pela vegetação natural aumentou em um esforço para mitigar os efeitos da mudança do uso da terra. Nesta linha de pensamento, desenvolvemos um índice para valorar as comunidades de árvores - do ponto de vista antropocêntrico - da savana brasileira (Cerrado). O índice e a cartografia produzida servirão como ferramenta para a priorização da conservação, bem como para revelar como a colonização e a expansão da agricultura tem ocorrido. Para desenvolver o índice, foram produzidas novas camadas ambientais com resolução de 90m; A distribuição das 93 espécies mais comuns foi modelada; e a cartografia da distribuição de cada uso humano das árvores (alimentos, aromáticos, fibras, cosméticos, cortiça, etc., totalizando 20 usos) e um índice de valor total fo desenvolvido. O novo índice de valor, nomenado a Soma de Usos (SoU, Sum of Uses), representa o número esperado de usos para a montagem de espécies potenciais que poderia estar ocorrendo no lugar em condições ideais. O impacto da agricultura foi avaliado pela contabilização da área que foi convertida em lavouras. Nossos resultados indicam fortemente que a colonização humana e a expansão de terras cultivadas eliminaram as árvores de áreas que antes eram melhores prestadores de serviços ambientais. Por outro lado, observamos também que as áreas protegidas no Cerrado estão localizadas onde esperamos encontrar valor marginal para as espécies ótimas. Esses resultados nos levam a pensar que a estratégia de conservação pode estar longe de ser ideal para o maior remanescente arável do mundo. / The interest in valuing the ecosystem services provided by the natural vegetation has increased in an effort to mitigate the effects of land use change. In this line of thinking, we developed an index to value the tree communities -from an anthropocentric point of view- of the Brazilian savannah (Cerrado). The index and the cartography produced will serve as a tool for prioritization of conservation, has well as to unveil how colonization and agriculture expansion has taken place. In order to develop the index: new environmental layers at 90m resolution were produced; the most common 93 species’ distribution was modelled; and cartography for each use humans derive from the trees (food, aromatic, fiber, cosmetic, cork, etc., totaling 20 uses) and a total value index were developed. The new index of value, namely the Sum of Uses (SoU), represent the expected number of uses for the potential species assemblage that could be taking place under optimal conditions. The impact of agriculture was assessed by accounting for the area that has been converted to croplands. Our results strongly indicate that human settlement and cropland expansion have cleared the trees of areas that once were better than average ecosystem service providers. On the other hand, we also observe that protected areas in the Cerrado are located where we expect to find marginal value for the optimal communities. These results lead us to think that the conservation strategy might be far from optimal for the largest remaining arable patch in the world.

Page generated in 0.0373 seconds