• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multi-task regression QSAR/QSPR prediction utilizing text-based Transformer Neural Network and single-task using feature-based models

Dimitriadis, Spyridon January 2021 (has links)
With the recent advantages of machine learning in cheminformatics, the drug discovery process has been accelerated; providing a high impact in the field of medicine and public health. Molecular property and activity prediction are key elements in the early stages of drug discovery by helping prioritize the experiments and reduce the experimental work. In this thesis, a novel approach for multi-task regression using a text-based Transformer model is introduced and thoroughly explored for training on a number of properties or activities simultaneously. This multi-task regression with Transformer based model is inspired by the field of Natural Language Processing (NLP) which uses prefix tokens to distinguish between each task. In order to investigate our architecture two data categories are used; 133 biological activities from ExCAPE database and three physical chemistry properties from MoleculeNet benchmark datasets. The Transformer model consists of the embedding layer with positional encoding, a number of encoder layers, and a Feedforward Neural Network (FNN) to turn it into a regression problem. The molecules are represented as a string of characters using the Simplified Molecular-Input Line-Entry System (SMILES) which is a ’chemistry language’ with its own syntax. In addition, the effect of Transfer Learning is explored by experimenting with two pretrained Transformer models, pretrained on 1.5 million and on 100 million molecules. The text-base Transformer models are compared with a feature-based Support Vector Regression (SVR) with the Tanimoto kernel where the input molecules are encoded as Extended Connectivity Fingerprint (ECFP), which are calculated features. The results have shown that Transfer Learning is crucial for improving the performance on both property and activity predictions. On bioactivity tasks, the larger pretrained Transformer on 100 million molecules achieved comparable performance to the feature-based SVR model; however, overall SVR performed better on the majority of the bioactivity tasks. On the other hand, on physicochemistry property tasks, the larger pretrained Transformer outperformed SVR on all three tasks. Concluding, the multi-task regression architecture with the prefix token had comparable performance with the traditional feature-based approach on predicting different molecular properties or activities. Lastly, using the larger pretrained models trained on a wide chemical space can play a key role in improving the performance of Transformer models on these tasks.
2

Learning with Sparcity: Structures, Optimization and Applications

Chen, Xi 01 July 2013 (has links)
The development of modern information technology has enabled collecting data of unprecedented size and complexity. Examples include web text data, microarray & proteomics, and data from scientific domains (e.g., meteorology). To learn from these high dimensional and complex data, traditional machine learning techniques often suffer from the curse of dimensionality and unaffordable computational cost. However, learning from large-scale high-dimensional data promises big payoffs in text mining, gene analysis, and numerous other consequential tasks. Recently developed sparse learning techniques provide us a suite of tools for understanding and exploring high dimensional data from many areas in science and engineering. By exploring sparsity, we can always learn a parsimonious and compact model which is more interpretable and computationally tractable at application time. When it is known that the underlying model is indeed sparse, sparse learning methods can provide us a more consistent model and much improved prediction performance. However, the existing methods are still insufficient for modeling complex or dynamic structures of the data, such as those evidenced in pathways of genomic data, gene regulatory network, and synonyms in text data. This thesis develops structured sparse learning methods along with scalable optimization algorithms to explore and predict high dimensional data with complex structures. In particular, we address three aspects of structured sparse learning: 1. Efficient and scalable optimization methods with fast convergence guarantees for a wide spectrum of high-dimensional learning tasks, including single or multi-task structured regression, canonical correlation analysis as well as online sparse learning. 2. Learning dynamic structures of different types of undirected graphical models, e.g., conditional Gaussian or conditional forest graphical models. 3. Demonstrating the usefulness of the proposed methods in various applications, e.g., computational genomics and spatial-temporal climatological data. In addition, we also design specialized sparse learning methods for text mining applications, including ranking and latent semantic analysis. In the last part of the thesis, we also present the future direction of the high-dimensional structured sparse learning from both computational and statistical aspects.

Page generated in 0.0871 seconds