Spelling suggestions: "subject:"multibody"" "subject:"multibacilar""
1 |
Air Reconnaissance Analysis using Convolutional Neural Network-based Object DetectionFasth, Niklas, Hallblad, Rasmus January 2020 (has links)
The Swedish armed forces use the Single Source Intelligent Cell (SSIC), developed by Saab, for analysis of aerial reconnaissance video and report generation. The analysis can be time-consuming and demanding for a human operator. In the analysis workflow, identifying vehicles is an important part of the work. Artificial Intelligence is widely used for analysis in many industries to aid or replace a human worker. In this paper, the possibility to aid the human operator with air reconnaissance data analysis is investigated, specifically, object detection for finding cars in aerial images. Many state-of-the-art object detection models for vehicle detection in aerial images are based on a Convolutional Neural Network (CNN) architecture. The Faster R-CNN- and SSD-based models are both based on this architecture and are implemented. Comprehensive experiments are conducted using the models on two different datasets, the open Video Verification of Identity (VIVID) dataset and a confidential dataset provided by Saab. The datasets are similar, both consisting of aerial images with vehicles. The initial experiments are conducted to find suitable configurations for the proposed models. Finally, an experiment is conducted to compare the performance of a human operator and a machine. The results from this work prove that object detection can be used to supporting the work of air reconnaissance image analysis regarding inference time. The current performance of the object detectors makes applications, where speed is more important than accuracy, most suitable.
|
Page generated in 0.0363 seconds