Spelling suggestions: "subject:"multicoupled"" "subject:"multicouche""
1 |
Techniques combinatoires pour les algorithmes paramétrés et les noyaux, avec applications aux problèmes de multicoupe. / Combinatorial Techniques for Parameterized Algorithms and Kernels, with Applications to Multicut.Daligault, Jean 05 July 2011 (has links)
Dans cette thèse, nous abordons des problèmes NP-difficiles à l'aide de techniques combinatoires, en se focalisant sur le domaine de la complexité paramétrée. Les principaux problèmes que nous considérons sont les problèmes de Multicoupe et d'Arbre Orienté Couvrant avec Beaucoup de Feuilles. La Multicoupe est une généralisation naturelle du très classique problème de coupe, et consiste à séparer un ensemble donné de paires de sommets en supprimant le moins d'arêtes possible dans un graphe. Le problème d'Arbre Orienté Couvrant avec Beaucoup de Feuilles consiste à trouver un arbre couvrant avec le plus de feuilles possible dans un graphe dirigé. Les résultats principaux de cette thèse sont les suivants. Nous montrons que le problème de Multicoupe paramétré par la taille de la solution est FPT (soluble à paramètre fixé), c'est-à-dire que l'existence d'une multicoupe de taille $k$ dans un graphe à $n$ sommets peut être décidée en temps $f(k)*poly(n)$. Nous montrons que Multicoupe dans les arbres admet un noyau polynomial, c'est-à-dire est réductible aux instances de taille polynomiale en $k$. Nous donnons un algorithme en temps $O^*(3.72^k)$ pour le problème d'Arbre Orienté Couvrant avec Beaucoup de Feuilles et le premier algorithme exponentiel exact non trivial (c'est-à-dire meilleur que $2^n$). Nous fournissons aussi un noyau quadratique et une approximation à facteur constant. Ces résultats algorithmiques sont basés sur des résultats combinatoires et des propriétés structurelles qui concernent, entre autres, les décompositions arborescentes, les mineurs, des règles de réduction et les $s-t$ numberings. Nous présentons des résultats combinatoires hors du domaine de la complexité paramétrée: une caractérisation des graphes de cercle Helly comme les graphes de cercle sans diamant induit, et une caractérisation partielle des classes de graphes 2-bel-ordonnées. / This thesis tackles NP-hard problems with combinatorial techniques, focusing on the framework of Fixed-Parameter Tractability. The main problems considered here are Multicut and Maximum Leaf Out-branching. Multicut is a natural generalisation of the cut problem, and consists in simultaneously separating prescribed pairs of vertices by removing as few edges as possible in a graph. Maximum Leaf Out-branching consists in finding a spanning directed tree with as many leaves as possible in a directed graph. The main results of this thesis are the following. We show that Multicut is FPT when parameterized by the solution size, i.e. deciding the existence of a multicut of size $k$ in a graph with $n$ vertices can be done in time $f(k)*poly(n)$. We show that Multicut In Trees admits a polynomial kernel, i.e. can be reduced to instances of size polynomial in $k$. We give an $O^*(3.72^k)$ algorithm for Maximum Leaf Out-branching and the first non-trivial (better than $2^n$) exact algorithm. We also provide a quadratic kernel and a constant factor approximation algorithm. These algorithmic results are based on combinatorial results and structural properties, involving tree decompositions, minors, reduction rules and $s-t$ numberings, among others. We present results obtained with combinatorial techniques outside the scope of parameterized complexity: a characterization of Helly circle graphs as the diamond-free circle graphs, and a partial characterisation of 2-well-quasi-ordered classes of graphs.
|
2 |
Techniques combinatoires pour les algorithmes paramétrés et les noyaux, avec applications aux problèmes de multicoupe.Daligault, Jean 05 July 2011 (has links) (PDF)
Dans cette thèse, nous abordons des problèmes NP-difficiles à l'aide de techniques combinatoires, en se focalisant sur le domaine de la complexité paramétrée. Les principaux problèmes que nous considérons sont les problèmes de Multicoupe et d'Arbre Orienté Couvrant avec Beaucoup de Feuilles. La Multicoupe est une généralisation naturelle du très classique problème de coupe, et consiste à séparer un ensemble donné de paires de sommets en supprimant le moins d'arêtes possible dans un graphe. Le problème d'Arbre Orienté Couvrant avec Beaucoup de Feuilles consiste à trouver un arbre couvrant avec le plus de feuilles possible dans un graphe dirigé. Les résultats principaux de cette thèse sont les suivants. Nous montrons que le problème de Multicoupe paramétré par la taille de la solution est FPT (soluble à paramètre fixé), c'est-à-dire que l'existence d'une multicoupe de taille k dans un graphe à n sommets peut être décidée en temps f(k) ∗ poly(n). Nous montrons que Multicoupe dans les arbres admet un noyau polynomial, c'est-à-dire est réductible aux instances de taille polynomiale en k. Nous donnons un algorithme en temps O∗(3.72k) pour le problème d'Arbre Orienté Couvrant avec Beaucoup de Feuilles et le premier algorithme exponentiel exact non trivial (c'est-à-dire meilleur que 2n). Nous fournissons aussi un noyau quadratique et une approximation à facteur constant. Ces résultats algorithmiques sont basés sur des résultats combinatoires et des propriétés structurelles qui concernent, entre autres, les décompositions arborescentes, les mineurs, des règles de réduction et les s−t numberings. Nous présentons des résultats combinatoires hors du domaine de la complexité paramétrée: une caractérisation des graphes de cercle Helly comme les graphes de cercle sans diamant induit, et une caractérisation partielle des classes de graphes 2-bel-ordonnées.
|
3 |
Variantes non standards de problèmes d'optimisation combinatoire / Non-standard variants of combinatorial optimization problemsLe Bodic, Pierre 28 September 2012 (has links)
Cette thèse est composée de deux parties, chacune portant sur un sous-domaine de l'optimisation combinatoire a priori distant de l'autre. Le premier thème de recherche abordé est la programmation biniveau stochastique. Se cachent derrière ce terme deux sujets de recherche relativement peu étudiés conjointement, à savoir d'un côté la programmation stochastique, et de l'autre la programmation biniveau. La programmation mathématique (PM) regroupe un ensemble de méthodes de modélisation et de résolution, pouvant être utilisées pour traiter des problèmes pratiques que se posent des décideurs. La programmation stochastique et la programmation biniveau sont deux sous-domaines de la PM, permettant chacun de modéliser un aspect particulier de ces problèmes pratiques. Nous élaborons un modèle mathématique issu d'un problème appliqué, où les aspects biniveau et stochastique sont tous deux sollicités, puis procédons à une série de transformations du modèle. Une méthode de résolution est proposée pour le PM résultant. Nous démontrons alors théoriquement et vérifions expérimentalement la convergence de cette méthode. Cet algorithme peut être utilisé pour résoudre d'autres programmes biniveaux que celui qui est proposé.Le second thème de recherche de cette thèse s'intitule "problèmes de coupe et de couverture partielles dans les graphes". Les problèmes de coupe et de couverture sont parmi les problèmes de graphe les plus étudiés du point de vue complexité et algorithmique. Nous considérons certains de ces problèmes dans une variante partielle, c'est-à-dire que la propriété de coupe ou de couverture dont il est question doit être vérifiée partiellement, selon un paramètre donné, et non plus complètement comme c'est le cas pour les problèmes originels. Précisément, les problèmes étudiés sont le problème de multicoupe partielle, de coupe multiterminale partielle, et de l'ensemble dominant partiel. Les versions sommets des ces problèmes sont également considérés. Notons que les problèmes en variante partielle généralisent les problèmes non partiels. Nous donnons des algorithmes exacts lorsque cela est possible, prouvons la NP-difficulté de certaines variantes, et fournissons des algorithmes approchés dans des cas assez généraux. / This thesis is composed of two parts, each part belonging to a sub-domain of combinatorial optimization a priori distant from the other. The first research subject is stochastic bilevel programming. This term regroups two research subject rarely studied together, namely stochastic programming on the one hand, and bilevel programming on the other hand. Mathematical Programming (MP) is a set of modelisation and resolution methods, that can be used to tackle practical problems and help take decisions. Stochastic programming and bilevel programming are two sub-domains of MP, each one of them being able to model a specific aspect of these practical problems. Starting from a practical problem, we design a mathematical model where the bilevel and stochastic aspects are used together, then apply a series of transformations to this model. A resolution method is proposed for the resulting MP. We then theoretically prove and numerically verify that this method converges. This algorithm can be used to solve other bilevel programs than the ones we study.The second research subject in this thesis is called "partial cut and cover problems in graphs". Cut and cover problems are among the most studied from the complexity and algorithmical point of view. We consider some of these problems in a partial variant, which means that the cut or cover property that is looked into must be verified partially, according to a given parameter, and not completely, as it was the case with the original problems. More precisely, the problems that we study are the partial multicut, the partial multiterminal cut, and the partial dominating set. Versions of these problems were vertices are
|
Page generated in 0.0488 seconds