• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Introduction du gauchissement dans les éléments finis multifibres pour la modélisation non linéaire des structures en béton armé / Development of enhanced multifiber beam elements with warping. Application to nonlinear modeling of reinforced concrete structures.

Capdevielle, Sophie 13 October 2016 (has links)
Les travaux présentés dans cette thèse sont consacrés à l'enrichissement de la méthode de modélisation par éléments finis de type poutre multifibre. La méthode a fait ses preuves pour le calcul dynamique d'éléments de structures élancés, lorsque les contraintes normales prédominent. Toutefois, lorsque les contraintes de cisaillement sont prépondérantes, l'approximation de la cinématique utilisée par les éléments poutre n'est plus assez précise pour obtenir des résultats satisfaisants. L'objet de ces travaux de thèse est d'améliorer la méthode en créant un nouvel élément permettant de tenir compte du gauchissement des sections transversales dû au cisaillement. Ce développement est réalisé en deux étapes. Les éléments sont enrichis dans un premier temps par les déformations de gauchissement sous sollicitation de torsion. Le modèle de gauchissement est validé dans le domaine linéaire par confrontation aux résultats d'une modélisation numérique 3D. Après implémentation du gauchissement de torsion dans l'élément multifibre, des simulations numériques de poutres en torsion pure sont comparées à des résultats d'essais, permettant de valider le comportement des éléments poutre dans les domaines linéaire et non linéaire. Un modèle d'endommagement est utilisé pour le béton, et le gauchissement est mis à jour au fur et à mesure du calcul en tenant compte de l'évolution des propriétés matériau. L'étape suivante d'enrichissement est alors réalisée, avec l'élaboration d'un modèle de gauchissement complet sous toutes sollicitations de cisaillement, couplé au modèle d'endommagement. Une validation locale du profil de gauchissement élastique sous effort tranchant est effectuée par comparaison à la solution analytique, puis le profil de gauchissement sous sollicitations couplées de torsion et d'effort tranchant est validé par confrontation aux résultats d'une modélisation 3D. Outre la prise en compte du cisaillement par effort tranchant, la principale différence de cet enrichissement avec le modèle précédent est le calcul implicite du profil de gauchissement de la poutre au cours du calcul de structure. Les deux modèles développés sont comparés sur le comportement de poutres en torsion monotone, afin de quantifier l'impact de la méthode de calcul sur la précision des résultats et sur l'efficacité du calcul. Finalement, le modèle complet avec gauchissement est appliqué à la simulation sismique d'une structure. L'ensemble de ces cas-tests montre que l'enrichissement de la méthode par éléments finis multifibres est fonctionnel, avec des perspectives d'amélioration en ce qui concerne l'efficacité numérique notamment, et des perspectives intéressantes d'application. / The present work is dedicated to the numerical modeling of structures using multifiber beam elements. This numerical method was proved to be efficient to simulate the behavior of slender structural elements subject to normal stresses. However, the response of the model for shear-dominating stresses lacks of accuracy. This problem is addressed by introducing warping in the kinematics of multibfiber beam elements. A new multifiber element is developed in two steps. Torsional warping is first introduced in the deformations of an arbitrary-shaped composite cross section. The resulting warping profiles are validated by comparison with the axial displacements obtained by three-dimensional modeling of beams in torsion. After implementation of the warping kinematics in a Timoshenko multifiber beam element, the formulation is validated against the experimental behavior of beams subject to pure torsion. The material is modeled by a 3D damage law, and warping is updated throughout the computations to account for damage evolution. A comparison of torque–twist curves predicted with enhanced and classical beam elements to experimental curves highlights the importance of including warping in the model. The second step consists in formulating an element with additional warping degrees of freedom, accounting for the warping deformations due to both transverse shear and torsion. This element is validated using an analytical model for a beam subject to transverse shear. Then the linear elastic behavior of a beam subject to both shear and torsion is successfully compared to the results of a 3D simulation. The complete formulation is coupled to damage through an implicit soulution procedure for the beam and the warping degrees of freedom. The enhanced method is eventually used to compute the behavior of a full structure subject to a seismic loading.
2

Modélisation objective de la localisation des déformations et de la fissuration des structures en béton soumises à des chargements statiques ou dynamiques / Objective modelisation of localized deformations and fracture in reinforced concrete structures

Giry, Cedric 10 November 2011 (has links)
Dans une problématique d'analyse de la durabilité des structures en béton armé, la quantification de la localisation des déformations et des propriétés des fissures sont deux points clés. Ce travail présente une méthode permettant, dans le cadre de la mécanique des milieux continus, d'améliorer la description de l'évolution de la localisation des déformations. En se basant sur une approche continue du problème, l'évolution des nonlinéarités dans le béton est décrite au travers d'un modèle d'endommagement régularisé. Pour améliorer la description de la localisation des déformations, une modification de la méthode de régularisation nonlocale intégrale sur les variables internes est proposée. L'influence de l'état de contrainte sur les interactions nonlocales est introduite dans la régularisation, afin de prendre en compte la dégradation de la structure ainsi que l'influence des conditions aux limites sur les interactions nonlocales. Cette méthode, implantée dans le code aux éléments finis Cast3M, est validée sur différents cas tests analysant l'évolution des nonlinéarités de l'enclenchement de l'endommagement jusqu'à la rupture et permet notamment de résoudre des pathologies identifiées pour la méthode nonlocale originale. La comparaison avec des résultats expérimentaux montre également la capacité du modèle à décrire l'évolution de la fissuration dans une structure. Le modèle développé est ensuite utilisé pour analyser le comportement de structures en béton armé et sert de base pour introduire une description de la fissuration dans une modélisation simplifiée de type poutre multifibre. A partir de calcul 3D sur des éléments en béton armé utilisant le modèle développé, une loi uniaxiale est identifiée pour déterminer la fissuration dans une fibre en fonction de l'énergie dissipée par le modèle d'endommagement. Une comparaison avec des résultats expérimentaux est effectuée et montre la capacité de cette approche simplifiée à estimer la fissuration. / For the durability analysis of reinforced concrete structures, the modelling of strain localization and the estimation of cracking properties are hot topics. This work introduces a method allowing, in the framework of continuous mechanics, to improve the description of the evolution of strain localization. Based on a continuous description of the problem, the evolution of nonlinearities in concrete is described with a regularized damage model. In order to improve the description of strain localization, a modification of the nonlocal integral regularization method is proposed. The influence of the stress state on the nonlocal interactions is introduced in the regularization method, in order to take into account the degradation of the structure (decrease of the bearing capacities) as well as the influence of free boundary conditions. This method, implemented in the finite element code Cast3M, is validated against several cases of study, by analyzing the evolution of nonlinearities from damage initiation up to failure. It allows solving several pathologies pointed out for the original nonlocal method. The comparison with experimental results shows also the capacity of the proposed model to describe the evolution of cracking in a structure. Then, the model developed is used to analyse the behaviour of reinforced concrete structures and to develop a method to quantify cracking in a multifiber beam element modelling. From 3D calculation on reinforced concrete element with the new nonlocal model developed, a uniaxial law is identified in order to estimate cracking as a function of the energy dissipated by the damage model. A comparison with experimental data is performed and shows the potentiality of this simplified approach to estimate cracking.

Page generated in 0.0561 seconds