• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 25
  • 17
  • 14
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 165
  • 62
  • 58
  • 49
  • 47
  • 38
  • 36
  • 25
  • 23
  • 19
  • 18
  • 16
  • 16
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Parallelized multigrid applied to modeling molecular electronics

Peacock, Darren. January 2007 (has links)
This thesis begins with a review on the topic of molecular electronics. The purpose of this review is to motivate the need for good theory to understand and predict molecular electronics behaviour. At present the most promising theoretical formalism for dealing with this problem is a combination of density functional theory and nonequilibrium Green's functions (NEGF-DFT). This formalism is especially attractive because it is an ab-initio technique, meaning that it is completely from first principles and does not require any empirical parameters. An implementation of this formalism has been developed by the research group of Hong Guo and is presented and explained here. A few other implementations which are similar but differ in some ways are also discussed briefly to highlight their various advantages and disadvantages. / One of the difficulties of ab-initio calculations is that they can be extremely costly in terms of the computing time and memory that they require. For this reason, in addition to using appropriate approximations, sophisticated numerical analysis tech niques need to be used. One of the bottlenecks in the NEGF-DFT method is solving the Poisson equation on a large real space grid. For studying systems incorporating a gate voltage it is required to be able to solve this problem with nonperiodic boundary conditions. In order to do this a technique called multigrid is used. This thesis examines the multigrid technique and develops an efficient implementation for the purpose of use in the NEGF-DFT formalism. For large systems, where it is necessary to use especially large real space grids, it is desirable to run simulations on parallel computing clusters to handle the memory requirements and make the code run faster. For this reason a parallel implementation of multigrid is developed and tested for performance. The multigrid tool is incorporated into the NEGF-DFT formalism and tested to ensure that it is properly implemented. A few calculations are made on a benzenedithiol system with gold leads to show the effect of an applied gate voltage.
32

Performance of algebraic multigrid for parallelized finite element DNS/LES solvers /

Larson, Gregory J. January 2006 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Mechanical Engineering, 2006. / Includes bibliographical references (p. 81-84).
33

Hybrid Particle-Grid Water Simulation using Multigrid Pressure Solver

Karlsson, Per January 2014 (has links)
This thesis involves an evaluation of the multigrid method for solving systems of differential equations in hybrid particle-grid fluid simulations. The work in this thesis is focused on inviscid incompressible liquid and water simulations and the method of choice is Fluid Implicit Particle (FLIP). Equations and algorithms are presented in but not restricted to a two-dimensional domain, and can easily be extended to three dimensions. The results of the multigrid pressure solver in this thesis shows that the method is sufficient for non real-time simulations in computer graphics. A comparison between multigrid and the traditional preconditioned conjugate gradient method showed similar results in tests for correctness.
34

Conception d’un solveur haute performance de systèmes linéaires creux couplant des méthodes multigrilles et directes pour la résolution des équations de Maxwell 3D en régime harmonique discrétisées par éléments finis

Chanaud, Mathieu 18 October 2011 (has links)
Cette thèse présente une méthode parallèle de résolution de systèmes linéaires creux basée sur un algorithme multigrille géométrique. Les estimations de la solution sont calculées par méthode directe sur le niveau grossier ou par méthode itérative de type splitting sur les maillages raffinés; des opérateurs inter-grilles sont définis pour interpoler les solutions approximatives entre les différents niveaux de raffinements. Ce solveur est utilisé dans le cadre de simulations électromagnétiques en 3D (équations de Maxwell en régime harmonique discrétisées par éléments finis de Nédélec de premier ordre) en tant que méthode stationnaire ou comme préconditionneur d’une méthode de Krylov (GMRES). / Multigrid algorithm. The system is solved thanks to a direct method on the coarse mesh anditerative splitting method on refined meshes; inter-grid operators are defined to interpolate theapproximate solutions on the different refinement levels. Applied to 3D electromagnetic simulations(Nédélec first order finite element approximation of time harmonic Maxwell equations) thissolver is used either as a stationary method or as a preconditioner for a Krylov subspace method(GMRES).
35

A multigrid method for determining the deflection of lithospheric plates

Carter, Paul M. January 1988 (has links)
Various models are currently in existence for determining the deflection of lithospheric plates under an applied transverse load. The most popular models treat lithospheric plates as thin elastic or thin viscoelastic plates. The equations governing the deflection of such plates have been solved successfully in two dimensions using integral transform techniques. Three dimensional models have been solved using Fourier Series expansions assuming a sinusoidal variation for the load and deflection. In the engineering context, the finite element technique has also been employed. The current aim, however, is to develop an efficient solver for the three dimensional elastic and viscoelastic problems using finite difference techniques. A variety of loading functions may therefore be considered with minimum work involved in obtaining a solution for different forcing functions once the main program has been developed. The proposed method would therefore provide a valuable technique for assessing new models for the loading of lithospheric plates as well as a useful educational tool for use in geophysics laboratories. The multigrid method, which has proved to be a fast, efficient solver for elliptic partial differential equations, is examined as the basis for a solver of both the elastic and viscoelastic problems. The viscoelastic problem, being explicitly time-dependent, is the more challenging of the two and will receive particular attention. Multigrid proves to be a very effective method applicable to the solution of both the elastic and viscoelastic problems. / Science, Faculty of / Mathematics, Department of / Graduate
36

An algebraic multigrid solution strategy for efficient solution of free-surface flows

Van den Bergh, Wilhelm J. 22 September 2011 (has links)
Free-surface modelling (FSM) is a highly relevant and computationally intensive area of study in modern computational fluid dynamics. The Elemental software suite currently under development offers FSMcapability, and employs a preconditioned GMRES solver in an attempt to effect fast solution times. In terms of potential solver performance however, multigrid methods can be considered state-of-the-art. This work details the investigation into the use of AlgebraicMultigrid (AMG) as a high performance solver tool for use as black box plug-in for Elemental FSM. Special attention was given to the development of novel and robust methods of addressing AMG setup costs in addition to transcribing the solver to efficient C++ object-oriented code. This led to the development of the so-called Freeze extension of the basic algebraic multigrid method in an object-oriented C++ programming environment. The newly developed Freeze method reduces setup costs by periodically performing the setup procedure in an automatic and robust manner. The developed technology was evaluated in terms of robustness, stability and speed by applying it to benchmark FSM problems on structured and unstructured meshes of various sizes. This evaluation yielded a number of conclusive findings. First, the developed Freeze method reduced setup times by an order of magnitude. Second, the developed AMG solver offered substantial performance increases over the preconditioned GMRES method. In this way, it is proposed that this work has furthered the state-of-the-art of algebraic multigrid methods applied in the context of free-surface modelling. / Dissertation (MEng)--University of Pretoria, 2011. / Mechanical and Aeronautical Engineering / unrestricted
37

Parallelized multigrid applied to modeling molecular electronics

Peacock, Darren. January 2007 (has links)
No description available.
38

A Parallel Aggregation Algorithm for Inter-Grid Transfer Operators in Algebraic Multigrid

Garcia Hilares, Nilton Alan 13 September 2019 (has links)
As finite element discretizations ever grow in size to address real-world problems, there is an increasing need for fast algorithms. Nowadays there are many GPU/CPU parallel approaches to solve such problems. Multigrid methods can be used to solve large-scale problems, or even better they can be used to precondition the conjugate gradient method, yielding better results in general. Capabilities of multigrid algorithms rely on the effectiveness of the inter-grid transfer operators. In this thesis we focus on the aggregation approach, discussing how different aggregation strategies affect the convergence rate. Based on these discussions, we propose an alternative parallel aggregation algorithm to improve convergence. We also provide numerous experimental results that compare different aggregation approaches, multigrid methods, and conjugate gradient iteration counts, showing that our proposed algorithm performs better in serial and parallel. / Modeling real-world problems incurs a high computational cost because these mathematical models involve large-scale data manipulation. Thus we need fast and efficient algorithms. Nowadays there are many high-performance approaches for these problems. One such method is called the Multigrid algorithm. This approach models a physical domain using a hierarchy of grids, and so the effectiveness of these approaches relies on how well data can be transferred from grid to grid. In this thesis, we focus on the aggregation approach, which clusters a grid’s vertices according to its connections. We also provide an alternative parallel aggregation algorithm to give a faster solution. We show numerous experimental results that compare different aggregation approaches and multigrid methods, showing that our proposed algorithm performs better in serial and parallel than other popular implementations.
39

p-Multigrid explícito para um método de volumes finitos de alta-ordem não estruturado / Explicit p-multigrid for an unstructured high-order finite volume method

Silva, Juan Eduardo Casavilca 02 June 2016 (has links)
Desde o importante trabalho de Barth e Frederickson (1990), um certo número de pesquisadores têm estudado o método de Volumes Finitos de alta-ordem k-exato, por exemplo o grupo do Prof. Ollivier-Gooch: Ollivier-Gooch e van Altena (2002), Nejat (2007), Michalak (2009), etc. Outras discretizações espaciais de alta-ordem bastante populares são o método Galerkin Descontínuo e o método de Diferença Espectral; processos iterativos que involucram estes esquemas tem sido acelerados, nos últimos anos, por métodos p-multigrid. Porém, esta aceleração não tem sido aplicada no contexto do método de Volumes Finitos de alta-ordem, pelo menos para conhecimento do autor desta tese. Por isso, o objetivo desta pesquisa é adaptar o p-multigrid desenvolvido por Liang et al. (2009b) no contexto da Diferença Espectral, para o ambiente dos Volumes Finitos estudado pelo Prof. Ollivier-Gooch. A pesquisa começa implementando o solver VF-RK, de Volumes Finitos com avanço Runge-Kutta, para resolver as equações de advecção-difusão e de Euler aplicados a problemas estacionários, por exemplo, o escoamento transônico ao redor do NACA 0012. Depois, estuda-se o método p-multigrid no contexto da Diferença Espectral; o p-multigrid acelera o processo iterativo comutando níveis polinomiais de alta e de baixa-ordem. Após esse estudo, a adaptação ao âmbito dos Volumes Finitos é realizada resultando num p-multigrid relativamente mais simples porque, em contraposição com o p-multigrid para Diferença Espectral, não precisa de operadores de restrição e prolongação para a comunicação entre diferentes níveis polinomiais. A pesquisa conclui com uma comparação com o método de Volumes Finitos de 4a ordem sem p-multigrid (solver VF-RK). Nesse sentido, implementa-se o solver pMG, baseado no p-multigrid proposto, para resolver os problemas estacionários considerados na primeira parte do trabalho; o smoother do p-multigrid é o esquema Runge-Kutta do código VF-RK, e cada problema estacionário é resolvido utilizando diferentes Vciclos procurando sempre soluções de 4a ordem. Os resultados indicam que o método p-multigrid proposto é mais eficiente que o método de Volumes Finitos de 4a ordem sem p-multigrid, isto é, os dois métodos oferecem a mesma precisão mas o primeiro pode levar menos de 50% do tempo de CPU do segundo. / Since Barth and Frederickson\'s important work (Barth e Frederickson, 1990), a number of researchers have studied high-order k-exact Finite Volume method, for example Prof. Ollivier-Gooch\'s group: Ollivier-Gooch e van Altena (2002), Nejat (2007), Michalak (2009), etc. Other quite popular high-order spatial discretizations are the Discontinuous Galerkin methods and the Spectral Difference methods; the iterative processes involving these schemes have been accelerated in recent years by p-multigrid methods. However, this acceleration has not been applied in the context of the high-order Finite Volume method, at least for the knowledge of the author of this thesis. Therefore, the objective of this research is to adapt the p-multigrid developed by Liang et al. (2009b) in the context of Spectral Difference methods, to the environment of Finite Volume studied by Prof. Ollivier-Gooch. This research begins by implementing the solver VF-RK, Finite Volume solver with Runge-Kutta advance, to compute the advection-diffusion equation and Euler equations applied to steady state problems, for example, the transonic flow around NACA 0012. Then, it is studied the p-multigrid method in the context of Spectral Difference schemes; p-multigrid accelerates the iterative process by switching polynomial levels of high- and low-order. After this study, the adaptation to the context of the Finite Volume scheme is performed resulting in a relatively simple p-multigrid because, in contrast to the p-multigrid for Spectral Difference schemes, it doesn\'t need restriction and prolongation operators for communication between different polynomial levels. The research concludes with a comparison with 4th order Finite Volume method without p-multigrid (solver VF-RK). Accordingly, the solver pMG, based on the proposed p-multigrid, is implemented to resolve the steady state problems considered in the first part of the work; the p-multigrid smoother is the Runge-Kutta scheme from VF-RK code, and each steady state problem is solved using different Vcycles, looking for 4th order solutions ever. The results indicate that the proposed p-multigrid method is more efficient than the 4th order Finite Volume method without p-multigrid: the two methods give the same accuracy but the first one can take less than 50% of second one\'s CPU time.
40

Estudo de suavizadores para o método Multigrid algébrico baseado em wavelet. / Smoother study of wavelet based algebraic Multigrid.

Junqueira, Luiz Antonio Custódio Manganelli 19 May 2008 (has links)
Este trabalho consiste na análise do comportamento do método WAMG (Wavelet-Based Algebraic Multigrid), método numérico de resolução de sistemas de equações lineares desenvolvido no LMAG-Laboratório de Eletromagnetismo Aplicado, com relação a diversos suavizadores. O fato dos vetores que compõem os operadores matriciais Pronlongamento e Restrição do método WAMG serem ortonormais viabiliza uma série de análises teóricas e de dados experimentais, permitindo visualizar características não permitidas nos outros métodos Multigrid (MG), englobando o Multigrid Geométrico (GMG) e o Multigrid Algébrico (AMG). O método WAMG V-Cycle com Filtro Haar é testado em uma variedade de sistemas de equações lineares variando o suavizador, o coeficiente de relaxação nos suavizadores Damped Jacobi e Sobre Relaxação Sucessiva (SOR), e a configuração de pré e pós-suavização. Entre os suavizadores testados, estão os métodos iterativos estacionários Damped Jacobi, SOR, Esparsa Aproximada a Inversa tipo Diagonal (SPAI-0) e métodos propostos com a característica de suavização para-otimizada. A título de comparação, métodos iterativos não estacionários são testados também como suavizadores como Gradientes Conjugados, Gradientes Bi-Conjugados e ICCG. Os resultados dos testes são apresentados e comentados. / This work is comprised of WAMG (Wavelet-Based Algebraic Multigrid) method behavioral analysis based on variety of smoothers, numerical method based on linear equation systems resolution developed at LMAG (Applied Electromagnetism Laboratory). Based on the fact that the vectors represented by WAMG Prolongation and Restriction matrix operators are orthonormals allows the use of a variety of theoretical and practical analysis, and therefore gain visibility of characteristics not feasible through others Multigrid (MG) methods, such as Geometric Multigrid (GMG) and Algebraic Multigrid (AMG). WAMG V-Cycle method with Haar Filter is tested under a variety of linear equation systems, by varying smoothers, relaxation coefficient at Damped Jacobi and Successive Over Relaxation (SOR) smoothers, and pre and post smoothers configurations. The tested smoothers are stationary iterative methods such as Damped Jacobi, SOR, Diagonal type-Sparse Approximate Inverse (SPAI-0) and suggested ones with optimized smoothing characteristic. For comparison purposes, the Conjugate Gradients, Bi-Conjugate Gradient and ICCG non-stationary iterative methods are also tested as smoothers. The testing results are formally presented and commented.

Page generated in 0.0536 seconds