1 |
Mechanistic-Empirical Modelling of Flexible Pavement Performance : Verifications Using APT MeasurementsAhmed, Abubeker Worake January 2014 (has links)
Mechanistic-Empirical (M-E) pavement design procedures are composed of a reliable response model to estimate the state of stress in the pavement and distress models in order to predict the different types of pavement distresses due to the prevailing traffic and environmental conditions. One of the main objectives of this study was to develop a response model based on multilayer elastic theory (MLET) with improved computational performance by optimizing the time consuming parts of the MLET processes. A comprehensive comparison of the developed program with two widely used programs demonstrated excellent agreement and improved computational performance. Moreover, the program was extended to incorporate the viscoelastic behaviour of bituminous materials through elastic-viscoelastic correspondence principle. A procedure based on collocation of linear viscoelastic (LVE) solutions at selected key time durations was also proposed that improved the computational performance for LVE analysis of stationary and moving loads. A comparison of the LVE responses with measurements from accelerated pavement testing (APT) revealed a good agreement. Furthermore the developed response model was employed to evaluate permanent deformation models for bound and unbound granular materials (UGMs) using full scale APTs. The M-E Pavement Design Guide (MEPDG) model for UGMs and two relatively new models were evaluated to model the permanent deformation in UGMs. Moreover, for bound materials, the simplified form of the MEPDG model for bituminous bound layers was also evaluated. The measured and predicted permanent deformations were in general in good agreement, with only small discrepancies between the models. Finally, as heavy traffic loading is one of the main factors affecting the performance of flexible pavement, three types of characterizations for heavy traffic axle load spectrum for M-E analysis and design of pavement structures were evaluated. The study recommended an improved approach that enhanced the accuracy and computational performance. / <p>QC 20140512</p>
|
2 |
Pavement behaviour evaluation during spring thaw based on the falling weight deflectometer methodSveinsdóttir, Berglind Ösp January 2011 (has links)
The bearing capacity of a road decreases greatly during spring thaw, when the previously frozen road begins to thaw. The extent of this decrease can be evaluated by making Falling Weight Deflectomter (FWD) measurements on the road, measuring the deflection of the road when an impact load is applied to it. The bearing capacity of the road can then be evaluated by backcalculating the layer modules with backcalculation programs, or through more simple calculations based on the deflection basin indices. Both analyses were carried out in this thesis with data from FWD measurements which were carried out on county road Lv 126 in Southern Sweden during the year 2010. The temperature and moisture content of the road were monitored during the same time. The aim with the thesis was to compare the two ways of analyses, and to find out if there is some relationship between them and the measured environmental data. The results showed that the base course layer and subbase decreased in stiffness during spring thaw about 50% while the decrease in the subgrade was 20%, compared to the backcalculated summer and autumn value. The results of the simple calculations from the deflection basin indices were well comparable to the backcalculation results. By comparing the backcalculated stiffness values to the moisture content measurements it was stated that the stiffness decreased as the moisture content increased.
|
Page generated in 0.0817 seconds