Spelling suggestions: "subject:"multinomial naïvebayes"" "subject:"multinomial naivebayes""
1 |
Using Machine Learning to Categorize Documents in a Construction ProjectBjörkendal, Nicklas January 2019 (has links)
Automation of document handling in the construction industries could save large amounts of time, effort and money and classifying a document is an important step in that automation. In the field of machine learning, lots of research have been done on perfecting the algorithms and techniques, but there are many areas where those techniques could be used that has not yet been studied. In this study I looked at how effectively the machine learning algorithm multinomial Naïve-Bayes would be able to classify 1427 documents split up into 19 different categories from a construction project. The experiment achieved an accuracy of 92.7% and the paper discusses some of the ways that accuracy can be improved. However, data extraction proved to be a bottleneck and only 66% of the original documents could be used for testing the classifier.
|
2 |
Maskininlärning för dokumentklassificering av finansielladokument med fokus på fakturor / Machine Learning for Document Classification of FinancialDocuments with Focus on InvoicesKhalid Saeed, Nawar January 2022 (has links)
Automatiserad dokumentklassificering är en process eller metod som syftar till att bearbeta ochhantera dokument i digitala former. Många företag strävar efter en textklassificeringsmetodiksom kan lösa olika problem. Ett av dessa problem är att klassificera och organisera ett stort antaldokument baserat på en uppsättning av fördefinierade kategorier.Detta examensarbete syftar till att hjälpa Medius, vilket är ett företag som arbetar med fakturaarbetsflöde, att klassificera dokumenten som behandlas i deras fakturaarbetsflöde till fakturoroch icke-fakturor. Detta har åstadkommits genom att implementera och utvärdera olika klassificeringsmetoder för maskininlärning med avseende på deras noggrannhet och effektivitet för attklassificera finansiella dokument, där endast fakturor är av intresse.I denna avhandling har två dokumentrepresentationsmetoder "Term Frequency Inverse DocumentFrequency (TF-IDF) och Doc2Vec" använts för att representera dokumenten som vektorer. Representationen syftar till att minska komplexiteten i dokumenten och göra de lättare att hantera.Dessutom har tre klassificeringsmetoder använts för att automatisera dokumentklassificeringsprocessen för fakturor. Dessa metoder var Logistic Regression, Multinomial Naïve Bayes och SupportVector Machine.Resultaten från denna avhandling visade att alla klassificeringsmetoder som använde TF-IDF, föratt representera dokumenten som vektorer, gav goda resultat i from av prestanda och noggranhet.Noggrannheten för alla tre klassificeringsmetoderna var över 90%, vilket var kravet för att dennastudie skulle anses vara lyckad. Dessutom verkade Logistic Regression att ha det lättare att klassificera dokumenten jämfört med andra metoder. Ett test på riktiga data "dokument" som flödarin i Medius fakturaarbetsflöde visade att Logistic Regression lyckades att korrekt klassificeranästan 96% av dokumenten.Avslutningsvis, fastställdes Logistic Regression tillsammans med TF-IDF som de övergripandeoch mest lämpliga metoderna att klara av problmet om dokumentklassficering. Dessvärre, kundeDoc2Vec inte ge ett bra resultat p.g.a. datamängden inte var anpassad och tillräcklig för attmetoden skulle fungera bra. / Automated document classification is an essential technique that aims to process and managedocuments in digital forms. Many companies strive for a text classification methodology thatcan solve a plethora of problems. One of these problems is classifying and organizing a massiveamount of documents based on a set of predefined categories.This thesis aims to help Medius, a company that works with invoice workflow, to classify theirdocuments into invoices and non-invoices. This has been accomplished by implementing andevaluating various machine learning classification methods in terms of their accuracy and efficiencyfor the task of financial document classification, where only invoices are of interest. Furthermore,the necessary pre-processing steps for achieving good performance are considered when evaluatingthe mentioned classification methods.In this study, two document representation methods "Term Frequency Inverse Document Frequency (TF-IDF) and Doc2Vec" were used to represent the documents as fixed-length vectors.The representation aims to reduce the complexity of the documents and make them easier tohandle. In addition, three classification methods have been used to automate the document classification process for invoices. These methods were Logistic Regression, Multinomial Naïve Bayesand Support Vector Machine.The results from this thesis indicate that all classification methods used TF-IDF, to represent thedocuments as vectors, give high performance and accuracy. The accuracy of all three classificationmethods is over 90%, which is the prerequisite for the success of this study. Moreover, LogisticRegression appears to cope with this task very easily, since it classifies the documents moreefficiently compared to the other methods. A test of real data flowing into Medius’ invoiceworkflow shows that Logistic Regression is able to correctly classify up to 96% of the data.In conclusion, the Logistic Regression together with TF-IDF is determined to be the overall mostappropriate method out of the other tested methods. In addition, Doc2Vec suffers to providea good result because the data set is not customized and sufficient for the method to workwell.
|
Page generated in 0.0768 seconds