• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 9
  • 9
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Computational Investigation of Multiple Injection Strategy in an Isobaric Combustion Engine

Aljabri, Hammam H. 07 1900 (has links)
Abstract: This thesis aims to contribute to the development of the isobaric combustion engines by exploring multiple injection strategies, by means of computational simulations using a commercial software Converge. A single injection case validated with experimental data in terms pressure trace and heat release rate was used as a baseline reference. The adjustment of the turbulent kinetic energy dissipation constant is found to have the most significant influence in reproducing the pressure and heat release rate histories observed in the experiment. As a first attempt to achieve isobaric combustion, a multiple injection strategy using a single injector was explored with up to four consecutive injections. Considering that the computational simulations were unable to reproduce the experimental data due to a number of uncertainties in the implemented models, the present study attempted to identify the main causes of the discrepancies through various parametric studies. First, different liquid fuel properties were examined and it was found that, while the physical properties of the fuels have a notable effect in terms of evaporation and atomization, such variations were not sufficient to reproduce the experimentally observed heat release cycle. Next, the effects of the uncertainties in the kinetic mechanisms were assessed by the reaction multiplier, an artificial adjustment of the rate constants, and it was found that the reaction multiplier affected the ignition of the first injection, but not the subsequent injection events. As such, the use of reaction multipliers to reproduce the experimental data was found to be unsuccessful. The effect of thermodynamics properties was also examined by employing real-gas equations of state, such as Redlich-Kwong and Peng-Robinson, and the results showed little difference at the conditions under consideration. Finally, advancing the start of injection was found to have the most significant effect on pressure trace and heat release rate to lead to a substantial improvement in the numerical prediction. The results suggest that the key uncertainties in modeling of the present engine combustion are likely the accurate timing of the start of injection combined with the exact injection rate shape profile.
2

A Computational Study on the Effect of Injection Strategy on Emissions in a DME Fueled CI Engine

Godavarthi, Bhavya Sree January 2015 (has links)
No description available.
3

A COMPUTATIONAL INVESTIGATION OF INJECTION STRATEGIES AND SENSITIVITY ANALYSIS OF AN ETHANOL FUELLED PPCI ENGINE

Panakarajupally, Ragavendra Prasad January 2016 (has links)
No description available.
4

Výroba součásti z plastu / Production single parts from thermoplastic

Michalčák, Jan January 2009 (has links)
The project elaborated in the frame of engineering studies branch N2307-00 is submitting design of a product from plastic from material PP GF30. In the frame of literal study there are summarized technical knowledge from the area of plastic processing. On its base there is selected and specified technology of plastic injection and costruction of injection mold. Thesis is further dealing with the construction of injection mold, which is solved as a 1+1 multiple with the use of side sliding flank cores. During the course of the tool construction there were used standardized elements of Hasco company. The tool will be fixed by the use of Arburg ALLROUNDER 320C injection press. In the conclusion of the thesis there are verified necessary strenght of the mold and basic production cost analyses.
5

A crank angle resolved CIDI engine combustion model with arbitrary fuel injection for control purpose

Kim, Chung-Gong 18 June 2004 (has links)
No description available.
6

Understanding complex CI-combustion strategies : an experimental investigation

Michailidis, Antonis D. January 2012 (has links)
Within this body of work several series of experiments will investigate the nature of complex combustion in an experimental single-cylinder engine emulating a modern passenger car size compression-ignition (CI) engine. Regimes of single, piloted single and piloted split-main injections will be tested and compared in terms of combustion characteristics, specific emission output and cyclic behaviour to determine how increased injection complexity affects the emissions and output of the modern CI engine. Through these tests, the effect of fuel-line stationary waves will be demonstrated and investigated, showing conclusively that optimised engine calibration is essential to account for injector-generated waves in any multiple injection scenario. This data will then be confirmed with a dedicated analysis using an injector rate measuring tube. The tests will then be expanded to include examination into the behaviour of injector needle-lift standard deviation over its operating cycle, in-cylinder pressure standard deviation behaviour and trends over the combustion cycle as well as IMEP variability. Through these tests a novel method to detect start of combustion will be proposed and compared to conventional methods. Low temperature combustion (LTC) will be tested under incremental injection complexity. Tests will be optimised for combustion phasing and injection pressure, with a view to analysis of emissions, output and cyclic behaviour to establish whether the knowledge gained about conventional combustion holds true under LTC. Optimization of engine parameters will be shown to result in easier to implement LTC regimes with superior emissions characteristics. Finally, LTC tests will be expanded to include 30% and 50% by volume gas-to-liquid fuel (GTL) blends in order to determine whether fuel characteristics further influence emissions, output and cyclic behaviour in LTC through complex injection regimes. How GTL-blend ratio affects trends in emissions and cyclic behaviour will also be examined and compared to conventional diesel fuel.
7

Separation of Pharmaceuticals by Capillary Electrophoresis using Partial Filling and Multiple-injections

Lodén, Henrik January 2008 (has links)
Different multiple-injection methodologies and the partial filling technique (PFT) have been utilized for separation of pharmaceuticals by capillary elec-trophoresis. In multiple-injection capillary zone electrophoresis (MICZE), the samples and all standards, used for construction of the calibration curve, are analyzed within a single run. Four different modes of MICZE have been described by means of equations, which were experimentally verified. The developed equations facilitate the transfer from conventional single-injection CZE to one or more of these MICZE-modes, depending on the selectivity between the analyte and the injection marker. The applicability of two of these modes was then demonstrated by quantification of buserelin and salbutamol, re-spectively in commercially available pharmaceutical products. The content of buserelin in an injection solution was determined to 0.94 mg/ml, which only deviated slightly from the declared concentration (1 mg/ml). An alter-native mode of MICZE, offering a higher number of sequential sample injec-tions, was then utilized for single-run determination of salbutamol in 15 tab-lets, with a labelled content of 8 mg. The average content of the tablets was determined to 7.8 mg, with an intra-tablet variation of 3 % or less. Moreover, UV- and mass-spectrometric detection of enantiomeric amines, resolved by non-aqueous capillary electrophoresis (NACE), was demon-strated. Separation of enantiomeric amines was achieved using the chiral selector (-)-2,3:4,6-di-O-isopropylidene-2-keto-L-gulonic acid, (-)-DIKGA. Introduction of the non-volatile (-)-DIKGA into the mass-spectrometer was avoided by using the PFT, where the capillary is only partially filled with electrolyte containing the chiral selector.
8

Modeling of Diesel HCCI combustion and its impact on pollutant emissions applied to global engine system simulation / Modélisation de la combustion diesel HCCI et de son impact sur la formation de polluants appliquée à la simulation système

Dulbecco, Alessio 02 February 2010 (has links)
La législation sur les émissions de polluants des Moteurs à Combustion Interne (ICEs) est de plus en plus contraignante et représente un gros défi pour les constructeurs automobiles. De nouvelles stratégies de combustion telles que la Combustion à Allumage par Compression Homogène (HCCI) et l’exploitation de stratégies d’injections multiples sont des voies prometteuses qui permettent de respecter les normes sur les émissions de NOx et de suies, du fait que la combustion a lieu dans un mélange très dilué et par conséquent à basse température. Ces aspects demandent la création d’outils numériques adaptés à ces nouveaux défis. Cette thèse présente le développement d’un nouveau modèle 0D de combustion Diesel HCCI : le dual Combustion Model (dual - CM). Le modèle dual-CM a été basé sur l’approche PCM-FPI utilisée en Mécanique des Fluides Numérique (CFD) 3D, qui permet de prédire les caractéristiques de l’auto-allumage et du dégagement de chaleur de tous les modes de combustion Diesel. Afin d’adapter l’approche PCM-FPI à un formalisme 0D, il est fondamental de décrire précisément le mélange à l’intérieur du cylindre. Par consequent, des modèles d’évaporation du carburant liquide, de formation de la zone de mélange et de variance de la fraction de mélange, qui permettent d’avoir une description détaillée des proprietés thermochimiques locales du mélange y compris pour des configurations adoptant des stratégies d’injections multiples, sont proposés. Dans une première phase, les résultats du modèle ont été comparés aux résultats du modèle 3D. Ensuite, le modèle dual-CM a été validé sur une grande base de données expérimentales; compte tenu du bon accord avec l’expérience et du temps de calcul réduit, l’approche présentée s’est montrée prometteuse pour des applications de type simulation système. Pour conclure, les limites des hypothèses utilisées dans dual-CM ont été investiguées et des perspectives pour les dévélopements futurs ont été proposées. / More and more stringent restrictions concerning the pollutant emissions of Internal Combustion Engines (ICEs) constitute a major challenge for the automotive industry. New combustion strategies such as Homogeneous Charge Compression Ignition (HCCI) and the implementation of complex injection strategies are promising solutions for achieving the imposed emission standards as they permit low NOx and soot emissions, via lean and highly diluted combustions, thus assuring low combustion temperatures. This requires the creation of numerical tools adapted to these new challenges. This Ph.D presents the development of a new 0D Diesel HCCI combustion model : the dual Combustion Model (dual−CM ). The dual-CM is based on the PCM-FPI approach used in 3D CFD, which allows to predict the characteristics of Auto-Ignition and Heat Release for all Diesel combustion modes. In order to adapt the PCM-FPI approach to a 0D formalism, a good description of the in-cylinder mixture is fundamental. Consequently, adapted models for liquid fuel evaporation, mixing zone formation and mixture fraction variance, which allow to have a detailed description of the local thermochemical properties of the mixture even in configurations adopting multiple injection strategies, are proposed. The results of the 0D model are compared in an initial step to the 3D CFD results. Then, the dual-CM is validated against a large experimental database; considering the good agreement with the experiments and low CPU costs, the presented approach is shown to be promising for global engine system simulations. Finally, the limits of the hypotheses made in the dual-CM are investigated and perspectives for future developments are proposed.
9

Optimization and Analysis of the Effects of Temperature, pH, and Injection Techniques on a Slow-Release Permanganate Gel for DNAPL Remediation

Cosgrove, Rex M. 17 September 2020 (has links)
No description available.

Page generated in 0.113 seconds