• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 6
  • 6
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of multiple-valued programmable logic arrays

Ko, Yong Ha 12 1900 (has links)
Approved for public release; distribution is unlimited / The goal of this thesis is the development of a programmable logic array (PLA) that accepts multiple-valued inputs and produces multiple valued outputs. The PLA is implemented in CMOS and multiple levels are encoded as current. It is programmed by choosing transistor geometries which control the current level at which the PLA reacts to inputs. An example of a 4-valued PLA is shown. As part of this research, a C program was written that produces a PLA layout. / http://archive.org/details/designofmultiple00koyo / Major, Republic of Korea Air Force
2

Lógica quaternária de alto desempenho e baixo consumo para circuitos VLSI / Low-power high-performance quaternary for VLSI circuits

Silva, Ricardo Cunha Gonçalves da January 2007 (has links)
Desde a década de 60, o aprimoramento das técnicas de fabricação de circuitos integrados que usam lógica binária tem levado ao aumento exponencial na densidade de dispositivos, melhoria do desempenho, redução da energia consumida e redução dos custos de fabricação dos circuitos integrados no estado da arte. Esse avanço tem sido alcançado historicamente pela miniaturização dos dispositivos que, já em escala nanométrica, começam a encontrar limites físicos para a sua redução. Com o intuito de dar continuidade ao avanço tecnológico, muitos trabalhos têm proposto a compactação da informação através do uso de lógica não binária como solução alternativa para a melhoria de desempenho de circuitos no estado da arte. Nesse sentido, diversos trabalhos foram desenvolvidos em diferentes tecnologias que vão de circuitos bipolares a dispositivos quânticos, entretanto, até o presente momento, nenhuma tecnologia demonstrou ao mesmo tempo os requisitos de desempenho, consumo, área e confiabilidade, necessários à aplicação em circuitos de alta escala de integração. Este trabalho apresenta uma nova família de circuitos de lógica quaternária com alto desempenho, baixos consumo e área e que usa tecnologia CMOS. Os circuitos desenvolvidos neste trabalho fazem uso de três fontes de alimentação e até oito diferentes transistores com diferentes tensões de limiar para realizar a lógica quaternária. São apresentados circuitos elementares como inversores e circuitos literais e com eles construídos circuitos aritméticos e multiplexadores. Os circuitos são simulados com a ferramenta SPICE usando a tecnologia TSMC 0,18 μm e os resultados são comparados com circuitos equivalentes em lógica binária. Na comparação de um somador completo quaternário de quatro bits, por exemplo, com o circuito equivalente em lógica binária, a implementação quaternária apresenta melhoria 55% na velocidade, 63% no consumo de potência e utiliza pouco mais de duas vezes o número de transistores. Este trabalho também propõe o uso de lógica quaternária em FPGA e são desenvolvidos blocos lógicos programáveis quaternários. Resultados de mapeamento lógico de circuitos aritméticos em blocos lógicos programáveis apresentam grande redução em área e consumo de potência na implementação quaternária quando comparado aos equivalentes binários. Em alguns circuitos quaternários, o consumo de potência e o número de transistores usados são reduzidos a 3% do consumo e do número de transistores usados nos circuitos equivalentes binários, enquanto o atraso crítico é duas vezes maior do que o atraso crítico binário. / Since the decade of 60, the improvement of techniques for manufacturing integrated circuits that use binary logic has led to the exponential increase in the density of devices, improving performance, reducing energy consumption and reducing costs of manufacture of integrated circuits in the state of the art. This breakthrough has been achieved historically by the miniaturization of devices, already in nano, starting to reach physical limits to their reduction. In order to give continuity to technological advancement, many studies have proposed the compaction of information through the use of non-binary logic as an alternative for the performance improvement of the state of the art circuits. Accordingly, several studies have been developed in different technologies ranging from bipolar circuits to quantum devices, however, at the moment, no technology demonstrated at the same time the performance requirements, consumption, area and reliability necessary for the application in very large scale of integration. This paper presents a new family of quaternary logic circuits with high performance, low consumption and area, which uses CMOS technology. The circuits developed in this work make use of three power supplies and up to eight different transistors with different threshold voltages, to perform the quaternary logic. Elementary circuits such as inverters and literal circuits are presented and used to implement multiplexers and arithmetic circuits. The circuits are simulated with the SPICE tool using TSMC 0.18 μm technology and the results are compared with equivalent circuits in binary logic. Comparison of a quaternary full adder of four bits, for example, with the equivalent circuit in binary logic shows 55% improvement in speed and 63% in the power consumption for the quaternary implementation and it uses little more than twice the number of transistors. This paper also proposes the use of quaternary logic in FPGA and quaternary configurable logic blocks are developed. Logical mapping results of arithmetic circuits in configurable logic blocks show great reduction in area and power consumption of the quaternary implementation compared to the equivalent binary. In some quaternary circuits, the consumption of power and the number of transistors used are reduced to 3% of consumption and the number of transistors used in the binary equivalent circuits, while the critical delay is two times higher than the binary critical delay.
3

Lógica quaternária de alto desempenho e baixo consumo para circuitos VLSI / Low-power high-performance quaternary for VLSI circuits

Silva, Ricardo Cunha Gonçalves da January 2007 (has links)
Desde a década de 60, o aprimoramento das técnicas de fabricação de circuitos integrados que usam lógica binária tem levado ao aumento exponencial na densidade de dispositivos, melhoria do desempenho, redução da energia consumida e redução dos custos de fabricação dos circuitos integrados no estado da arte. Esse avanço tem sido alcançado historicamente pela miniaturização dos dispositivos que, já em escala nanométrica, começam a encontrar limites físicos para a sua redução. Com o intuito de dar continuidade ao avanço tecnológico, muitos trabalhos têm proposto a compactação da informação através do uso de lógica não binária como solução alternativa para a melhoria de desempenho de circuitos no estado da arte. Nesse sentido, diversos trabalhos foram desenvolvidos em diferentes tecnologias que vão de circuitos bipolares a dispositivos quânticos, entretanto, até o presente momento, nenhuma tecnologia demonstrou ao mesmo tempo os requisitos de desempenho, consumo, área e confiabilidade, necessários à aplicação em circuitos de alta escala de integração. Este trabalho apresenta uma nova família de circuitos de lógica quaternária com alto desempenho, baixos consumo e área e que usa tecnologia CMOS. Os circuitos desenvolvidos neste trabalho fazem uso de três fontes de alimentação e até oito diferentes transistores com diferentes tensões de limiar para realizar a lógica quaternária. São apresentados circuitos elementares como inversores e circuitos literais e com eles construídos circuitos aritméticos e multiplexadores. Os circuitos são simulados com a ferramenta SPICE usando a tecnologia TSMC 0,18 μm e os resultados são comparados com circuitos equivalentes em lógica binária. Na comparação de um somador completo quaternário de quatro bits, por exemplo, com o circuito equivalente em lógica binária, a implementação quaternária apresenta melhoria 55% na velocidade, 63% no consumo de potência e utiliza pouco mais de duas vezes o número de transistores. Este trabalho também propõe o uso de lógica quaternária em FPGA e são desenvolvidos blocos lógicos programáveis quaternários. Resultados de mapeamento lógico de circuitos aritméticos em blocos lógicos programáveis apresentam grande redução em área e consumo de potência na implementação quaternária quando comparado aos equivalentes binários. Em alguns circuitos quaternários, o consumo de potência e o número de transistores usados são reduzidos a 3% do consumo e do número de transistores usados nos circuitos equivalentes binários, enquanto o atraso crítico é duas vezes maior do que o atraso crítico binário. / Since the decade of 60, the improvement of techniques for manufacturing integrated circuits that use binary logic has led to the exponential increase in the density of devices, improving performance, reducing energy consumption and reducing costs of manufacture of integrated circuits in the state of the art. This breakthrough has been achieved historically by the miniaturization of devices, already in nano, starting to reach physical limits to their reduction. In order to give continuity to technological advancement, many studies have proposed the compaction of information through the use of non-binary logic as an alternative for the performance improvement of the state of the art circuits. Accordingly, several studies have been developed in different technologies ranging from bipolar circuits to quantum devices, however, at the moment, no technology demonstrated at the same time the performance requirements, consumption, area and reliability necessary for the application in very large scale of integration. This paper presents a new family of quaternary logic circuits with high performance, low consumption and area, which uses CMOS technology. The circuits developed in this work make use of three power supplies and up to eight different transistors with different threshold voltages, to perform the quaternary logic. Elementary circuits such as inverters and literal circuits are presented and used to implement multiplexers and arithmetic circuits. The circuits are simulated with the SPICE tool using TSMC 0.18 μm technology and the results are compared with equivalent circuits in binary logic. Comparison of a quaternary full adder of four bits, for example, with the equivalent circuit in binary logic shows 55% improvement in speed and 63% in the power consumption for the quaternary implementation and it uses little more than twice the number of transistors. This paper also proposes the use of quaternary logic in FPGA and quaternary configurable logic blocks are developed. Logical mapping results of arithmetic circuits in configurable logic blocks show great reduction in area and power consumption of the quaternary implementation compared to the equivalent binary. In some quaternary circuits, the consumption of power and the number of transistors used are reduced to 3% of consumption and the number of transistors used in the binary equivalent circuits, while the critical delay is two times higher than the binary critical delay.
4

Lógica quaternária de alto desempenho e baixo consumo para circuitos VLSI / Low-power high-performance quaternary for VLSI circuits

Silva, Ricardo Cunha Gonçalves da January 2007 (has links)
Desde a década de 60, o aprimoramento das técnicas de fabricação de circuitos integrados que usam lógica binária tem levado ao aumento exponencial na densidade de dispositivos, melhoria do desempenho, redução da energia consumida e redução dos custos de fabricação dos circuitos integrados no estado da arte. Esse avanço tem sido alcançado historicamente pela miniaturização dos dispositivos que, já em escala nanométrica, começam a encontrar limites físicos para a sua redução. Com o intuito de dar continuidade ao avanço tecnológico, muitos trabalhos têm proposto a compactação da informação através do uso de lógica não binária como solução alternativa para a melhoria de desempenho de circuitos no estado da arte. Nesse sentido, diversos trabalhos foram desenvolvidos em diferentes tecnologias que vão de circuitos bipolares a dispositivos quânticos, entretanto, até o presente momento, nenhuma tecnologia demonstrou ao mesmo tempo os requisitos de desempenho, consumo, área e confiabilidade, necessários à aplicação em circuitos de alta escala de integração. Este trabalho apresenta uma nova família de circuitos de lógica quaternária com alto desempenho, baixos consumo e área e que usa tecnologia CMOS. Os circuitos desenvolvidos neste trabalho fazem uso de três fontes de alimentação e até oito diferentes transistores com diferentes tensões de limiar para realizar a lógica quaternária. São apresentados circuitos elementares como inversores e circuitos literais e com eles construídos circuitos aritméticos e multiplexadores. Os circuitos são simulados com a ferramenta SPICE usando a tecnologia TSMC 0,18 μm e os resultados são comparados com circuitos equivalentes em lógica binária. Na comparação de um somador completo quaternário de quatro bits, por exemplo, com o circuito equivalente em lógica binária, a implementação quaternária apresenta melhoria 55% na velocidade, 63% no consumo de potência e utiliza pouco mais de duas vezes o número de transistores. Este trabalho também propõe o uso de lógica quaternária em FPGA e são desenvolvidos blocos lógicos programáveis quaternários. Resultados de mapeamento lógico de circuitos aritméticos em blocos lógicos programáveis apresentam grande redução em área e consumo de potência na implementação quaternária quando comparado aos equivalentes binários. Em alguns circuitos quaternários, o consumo de potência e o número de transistores usados são reduzidos a 3% do consumo e do número de transistores usados nos circuitos equivalentes binários, enquanto o atraso crítico é duas vezes maior do que o atraso crítico binário. / Since the decade of 60, the improvement of techniques for manufacturing integrated circuits that use binary logic has led to the exponential increase in the density of devices, improving performance, reducing energy consumption and reducing costs of manufacture of integrated circuits in the state of the art. This breakthrough has been achieved historically by the miniaturization of devices, already in nano, starting to reach physical limits to their reduction. In order to give continuity to technological advancement, many studies have proposed the compaction of information through the use of non-binary logic as an alternative for the performance improvement of the state of the art circuits. Accordingly, several studies have been developed in different technologies ranging from bipolar circuits to quantum devices, however, at the moment, no technology demonstrated at the same time the performance requirements, consumption, area and reliability necessary for the application in very large scale of integration. This paper presents a new family of quaternary logic circuits with high performance, low consumption and area, which uses CMOS technology. The circuits developed in this work make use of three power supplies and up to eight different transistors with different threshold voltages, to perform the quaternary logic. Elementary circuits such as inverters and literal circuits are presented and used to implement multiplexers and arithmetic circuits. The circuits are simulated with the SPICE tool using TSMC 0.18 μm technology and the results are compared with equivalent circuits in binary logic. Comparison of a quaternary full adder of four bits, for example, with the equivalent circuit in binary logic shows 55% improvement in speed and 63% in the power consumption for the quaternary implementation and it uses little more than twice the number of transistors. This paper also proposes the use of quaternary logic in FPGA and quaternary configurable logic blocks are developed. Logical mapping results of arithmetic circuits in configurable logic blocks show great reduction in area and power consumption of the quaternary implementation compared to the equivalent binary. In some quaternary circuits, the consumption of power and the number of transistors used are reduced to 3% of consumption and the number of transistors used in the binary equivalent circuits, while the critical delay is two times higher than the binary critical delay.
5

A CAD tool for current-mode multiple-valued CMOS circuits

Lee, Hoon S. 12 1900 (has links)
Approved for public release; distribution is unlimited / The contribution of this thesis is the development of a CAD (computer aided design) tool for current mode multiple-valued logic (MVL) CMOS circuits. It is only the second known MVL CAD tool and the first CAD tool for MVL CMOS. The tool accepts a specification of the function to be realized by the user, produces a minimal or near-minimal realization (if such a realization is possible), and produces a layout of a programmable logic array (PLA) integrated circuit that realizes the given function. The layout is in MAGIC format, suitable for submission to a chip manufacturer. The CAD tool also allows the user to simulate the realized function so that he/she can verify correctness of design. The CAD tool is designed also to be an analysis tool for heuristic minimization algorithms. As part of this thesis, a random function generator and statistics gathering package were developed. In the present tool, two heuristics are provided and the user can choose one or both. In the latter case, the better realization is output to the user. The CAD tool is designed to be flexible, so that future improvements can be made in the heuristic algorithms, as well as the layout generator. Thus, the tool can be used to accommodate new technologies, for example, a voltage mode CMOS PLA rather than the current mode CMOS currently implemented. / http://archive.org/details/cadtoolforcurren00leeh / Lieutenant, Republic of Korea Navy
6

Current-Mode Techniques In The Synthesis And Applications Of Analog And Multi-Valued Logic In Mixed Signal Design

Bhat, Shankaranarayana M 11 1900 (has links)
The development of modern integration technologies is normally driven by the needs of digital CMOS circuit design. Rapid progress in silicon VLSI technologies has made it possible to implement multi-function and high performance electronic circuits on a single die. Coupled with this, the need for interfacing digital blocks to the external world resulted in the integration of analog blocks such as A/D and D/A converters, filters and oscillators with the digital logic on the same die. Thus, mixed signal system-on-chip (SOC) solutions are becoming a common practice in the present day integrated circuit (IC) technologies. In digital domain, aggressive technology scaling redefines, in many ways, the role of interconnects vis-`a-vis the logic in determining the overall performance. Apart from signal integrity, power dissipation and reliability issues, delays over long interconnects far exceeding the logic delay becomes a bottleneck in high speed operation. Moreover, with an increasing density of chips, the number of interchip connections is greatly increased as more and more functions are put on the same chip; thus, the size and performance of the chip are mostly dominated by wiring rather than devices. One of the most promising approaches to solve the above interconnection problems is the use of multiple-valued logic (MVL) inside the chip [Han93, Smi88]. The number of interconnections can be directly reduced with multiple valued signal representation. The reduced complexity of interconnections makes the chip area and delay much smaller leading to reduced cross talk noise and improved reliability. Thus, the inclusion of multiple-valued logic in a otherwise mixed design, consisting of analog and binary logic, can make the transition from analog to digital world much more smoother and at the same time improve the overall system performance. As the sizes of integrated devices decrease, maximum voltage ratings also rapidly decrease. Although decreased supply voltages do not restrict the design of digital circuits, it is harder to design high performance analog and multiple valued integrated circuits using new processes. As an alternative to voltage-mode signal processing, current-mode circuit techniques, which use current as a signal carrier, are drawing strong attention today due to their potential application in the design of high-speed mixed-signal processing circuits in low-voltage standard VLSI CMOS technologies. Industrial interest in this field has been propelled by the proposal of innovative ideas for filters, data converters and IC prototypes in the high frequency range [Tou90, Kol00]. Further, in MVL design using conventional CMOS processing, different current levels can be easily used to represent different logic values. Thus the case for an integrated approach to the design of analog, multi-valued and binary logic circuits using current-mode techniques seems to be worth considering. The work presented in this thesis is an effort to reaffirm the utility of current-mode circuit techniques to some of the existing as well as to some new areas of circuit design. We present new algorithms for the synthesis of a class of analog and multiple-valued logic circuits assuming an underlying CMOS current-mode building blocks. Next we present quaternary current-mode signaling scheme employing a simple encoder and decoder architecture for improving the signal delay characteristics of long interconnects in digital logic blocks. As an interface between analog and digital domain, we present an architecture of current-mode flash A/D converter. Finally, low power being a dominant design constraint in today IC technology, we present a scheme for static power minimization in a class of Current-mode circuits.

Page generated in 0.0602 seconds