Spelling suggestions: "subject:"multiplication ergodic theorem""
1 |
Lyapunov Exponents and Invariant Manifold for Random Dynamical Systems in a Banach SpaceLian, Zeng 16 July 2008 (has links) (PDF)
We study the Lyapunov exponents and their associated invariant subspaces for infinite dimensional random dynamical systems in a Banach space, which are generated by, for example, stochastic or random partial differential equations. We prove a multiplicative ergodic theorem. Then, we use this theorem to establish the stable and unstable manifold theorem for nonuniformly hyperbolic random invariant sets.
|
2 |
On equivariant triangularization of matrix cocyclesHoran, Joseph Anthony 14 April 2015 (has links)
The Multiplicative Ergodic Theorem is a powerful tool for studying certain types of dynamical systems, involving real matrix cocycles. It gives a block diagonalization of these cocycles, according to the Lyapunov exponents. We ask if it is always possible to refine the diagonalization to a block upper-triangularization, and if not over the real numbers, then over the complex numbers. After building up to the posing of the question, we prove that there are counterexamples to this statement, and give concrete examples of matrix cocycles which cannot be block upper-triangularized. / Graduate / 0405 / jahoran@uvic.ca
|
3 |
[en] MULTIPLICATIVE ERGODIC THEOREM IN NONPOSITIVELY CURVED SPACES / [pt] TEOREMA ERGÓDICO MULTIPLICATIVO EM ESPAÇOS MÉTRICOS DE CURVATURA NÃO-POSITIVA09 November 2021 (has links)
[pt] Apresentaremos uma versão de Teorema Ergódico Multiplicativo para cociclos subaditivos devido a Karlsson e Margulis. Como aplicação, analisaremos três exemplos de cociclos nos seguintes espaços: Grafo gerado por grupo livre em dois geradores, disco hiperbólico, espaco das matrizes positivas simétricas definidas. Também usaremos o Teorema de Karlsson e Margulis para mostrar o Teorema de Oseledets. / [en] We will show a version of Multiplicative Ergodic Theorem for subbaditive cocycles due to Karlsson and Margulis. As an application, we will analyze three examples of cocycles in following spaces: graph generated by free group of two generators, hyperbolic disc, space of positive definite symetric matrices. Also, we will use the Theorem of Karlsson and Margulis to prove Theorem of Oseledets.
|
Page generated in 0.0898 seconds