1 |
[en] MULTIPLICATIVE ERGODIC THEOREM IN NONPOSITIVELY CURVED SPACES / [pt] TEOREMA ERGÓDICO MULTIPLICATIVO EM ESPAÇOS MÉTRICOS DE CURVATURA NÃO-POSITIVA09 November 2021 (has links)
[pt] Apresentaremos uma versão de Teorema Ergódico Multiplicativo para cociclos subaditivos devido a Karlsson e Margulis. Como aplicação, analisaremos três exemplos de cociclos nos seguintes espaços: Grafo gerado por grupo livre em dois geradores, disco hiperbólico, espaco das matrizes positivas simétricas definidas. Também usaremos o Teorema de Karlsson e Margulis para mostrar o Teorema de Oseledets. / [en] We will show a version of Multiplicative Ergodic Theorem for subbaditive cocycles due to Karlsson and Margulis. As an application, we will analyze three examples of cocycles in following spaces: graph generated by free group of two generators, hyperbolic disc, space of positive definite symetric matrices. Also, we will use the Theorem of Karlsson and Margulis to prove Theorem of Oseledets.
|
2 |
[pt] FLUXOS C1- GENÉRICOS NÃO POSSUEM PROBABILIDADES INVARIANTES ABSOLUTAMENTE CONTÍNUAS / [en] THE NON-EXISTENCE OF ABSOLUTELY CONTINUOUS INVARIANT PROBABILITIES IS C1- GENERIC FOR FLOWS17 December 2021 (has links)
[pt] Provamos que campos de vetores C1- genéricos em uma variedade compacta
não possuem probabilidades invariantes absolutamente contínuas em relação
a uma medida de volume. Este trabalho estende ao caso de tempo contínuo
um resultado de Avila e Bochi. / [en] We prove that C1-generic vector fields in a compact manifold do not have
absolutely continuous invariant probabilities. This extends a result of Avila and Bochi to the continuous time case.
|
3 |
[pt] A FÓRMULA DE AVILA-BOCHI-HERMAN E OUTROS RESULTADOS RELACIONADOS / [en] AVILA-BOCHI-HERMAN S FORMULA AND OTHER RELATED RESULTSTHIAGO AUGUSTO LUCAS DA SILVA 17 December 2020 (has links)
[pt] Os expoentes de Lyapunov são uma ferramenta bastante utilizada quando
busca-se entender o comportamento de sistemas dinâmicos, em particular de
cociclos lineares. De fato, concentramo-nos no expoente maximal, pois este
determina o comportamento geral do sistema, de modo que sua positividade
pode ser um indicativo de que estamos lidando com um sistema caótico. Nesse
sentido estudamos um teorema provado por Michael Herman, que fornece uma
cota inferior para o expoente de Lyapunov maximal de uma classe de cociclos
lineares definidos por rotações no círculo. A prova deste resultado utiliza um
processo de complexificação do cociclo e um argumento de subharmonicidade.
Surpreendentemente, essa cota inferior é na verdade uma identidade, o que
foi provado posteriormente por Avila e Bochi. Como será mostrado nesta
dissertação, o argumento para obter a identidade depende crucialmente da
harmonicidade, e não da mera subharmonicidade de certas funções associadas
às iterações do cociclo. / [en] Lyapunov exponents are a widely used tool when trying to understand
the behavior of dynamical systems in general, and in particular that of linear
cocycles. We focus on the maximal exponent, as it determines the general
behavior of the system, in that its positivity can be an indication that we are
dealing with a chaotic system. In this sense, we study a theorem obtained by
Michael Herman, providing a lower bound on the maximal Lyapunov exponent
of a class of linear cocycles defined by circle rotations. The proof of this
result employs the complexification of the cocycle and an argument based
on subharmonicity. Surprisingly, this lower bound is in fact an identity, which
was proven later by Avila and Bochi. As it will be shown in this dissertation,
the argument for obtaining this identity depends crucially on the harmonicity,
as opposed to the mere subharmonicity of certain functions associated with
the iterates of the cocycle.
|
4 |
[pt] CONTINUIDADE HOLDER PARA OS EXPOENTES DE LYAPUNOV DE COCICLOS LINEARES ALEATÓRIOS / [en] HOLDER CONTINUITY FOR LYAPUNOV EXPONENTS OF RANDOM LINEAR COCYCLESMARCELO DURAES CAPELEIRO PINTO 27 May 2021 (has links)
[pt] Uma medida de probabilidade com suporte compacto em um grupo de
matrizes determina uma sequência de matrizes aleatórias i.i.d. Considere o
processo multiplicativo correspondente e suas médias geométricas. O teorema
de Furstenberg-Kesten, análogo da lei dos grandes números neste cenário,
garante que as médias geométricas desse processo multiplicativo convergem
quase certamente para uma constante, chamada de expoente de Lyapunov
maximal da medida dada. Este conceito pode ser reformulado no contexto
mais geral da teoria ergódica usando cociclos lineares aleatórios sobre o shift
de Bernoulli. Uma questão natural diz respeito às propriedades de regularidade do
expoente de Lyapunov como uma função dos seus dados. Sob uma condição
de irredutibilidade e em um cenário específico (que foi posteriormente generalizado
por vários autores) Le Page estabeleceu a continuidade de Holder
do expoente de Lyapunov. Recentemente, Baraviera e Duarte obtiveram uma
prova direta e elegante deste tipo de resultado. Seu argumento usa a fórmula
de Furstenberg e as propriedades de regularidade da medida estacionária.
Seguindo sua abordagem, neste trabalho obtemos um novo resultado
mostrando que, sob a mesma hipótese de irredutibilidade, o expoente de
Lyapunov depende Hölder continuamente da medida, relativamente à métrica
de Wasserstein, generalizando assim o resultado de Baraviera e Duarte. / [en] A compactly supported probability measure on a group of matrices determines
a sequence of i.i.d. random matrices. Consider the corresponding multiplicative
process and its geometric averages. Furstenberg-Kesten s theorem,
the analogue of the law of large numbers in this setting, ensures that the
geometric averages of this multiplicative process converge almost surely to a
constant, called the maximal Lyapunov exponent of the given measure. This
concept can be reformulated in the more general context of ergodic theory
using random linear cocycles over the Bernoulli shift.
A natural question concerns the regularity properties of the Lyapunov
exponent as a function of the data. Under an irreducibility condition and
in a specific setting (which was later generalized by various authors) Le
Page established the Holder continuity of the Lyapunov exponent. Recently,
Baraviera and Duarte obtained a direct and elegant proof of this type of result.
Their argument uses Furstenberg s formula and the regularity properties of the
stationary measure.
Following their approach, in this work we obtain a new result showing
that under the same irreducibility hypothesis, the Lyapunov exponent depends
Holder continuously on the measure, relative to the Wasserstein metric, thus
generalizing the result of Baraviera and Duarte.
|
Page generated in 0.03 seconds