1 |
[pt] A FÓRMULA DE AVILA-BOCHI-HERMAN E OUTROS RESULTADOS RELACIONADOS / [en] AVILA-BOCHI-HERMAN S FORMULA AND OTHER RELATED RESULTSTHIAGO AUGUSTO LUCAS DA SILVA 17 December 2020 (has links)
[pt] Os expoentes de Lyapunov são uma ferramenta bastante utilizada quando
busca-se entender o comportamento de sistemas dinâmicos, em particular de
cociclos lineares. De fato, concentramo-nos no expoente maximal, pois este
determina o comportamento geral do sistema, de modo que sua positividade
pode ser um indicativo de que estamos lidando com um sistema caótico. Nesse
sentido estudamos um teorema provado por Michael Herman, que fornece uma
cota inferior para o expoente de Lyapunov maximal de uma classe de cociclos
lineares definidos por rotações no círculo. A prova deste resultado utiliza um
processo de complexificação do cociclo e um argumento de subharmonicidade.
Surpreendentemente, essa cota inferior é na verdade uma identidade, o que
foi provado posteriormente por Avila e Bochi. Como será mostrado nesta
dissertação, o argumento para obter a identidade depende crucialmente da
harmonicidade, e não da mera subharmonicidade de certas funções associadas
às iterações do cociclo. / [en] Lyapunov exponents are a widely used tool when trying to understand
the behavior of dynamical systems in general, and in particular that of linear
cocycles. We focus on the maximal exponent, as it determines the general
behavior of the system, in that its positivity can be an indication that we are
dealing with a chaotic system. In this sense, we study a theorem obtained by
Michael Herman, providing a lower bound on the maximal Lyapunov exponent
of a class of linear cocycles defined by circle rotations. The proof of this
result employs the complexification of the cocycle and an argument based
on subharmonicity. Surprisingly, this lower bound is in fact an identity, which
was proven later by Avila and Bochi. As it will be shown in this dissertation,
the argument for obtaining this identity depends crucially on the harmonicity,
as opposed to the mere subharmonicity of certain functions associated with
the iterates of the cocycle.
|
Page generated in 0.0227 seconds