• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 17
  • 16
  • 11
  • 8
  • 2
  • 1
  • Tagged with
  • 154
  • 56
  • 45
  • 45
  • 44
  • 36
  • 32
  • 30
  • 27
  • 24
  • 23
  • 22
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Adaptive receivers for DS-CDMA mobile radio

Turner, P. G. January 1996 (has links)
No description available.
12

Joint multiple parameter estimation and channel decoding for physical-layer network coding and multiuser detection.

January 2015 (has links)
本文研究在物理層網絡編碼(PNC)系統和多用戶檢測(MUD)系統中的聯合多參數估計與信道譯碼問題。PNC 與MUD 都是從多個用戶的同時信號傳輸中獲利的技術。然而,多個同時傳輸信號的迭加也對信號處理帶來了若干挑戰。首先一個挑戰是在接收機處的多參數估計問題。另外一個挑戰是,如何同時補償多個參數。本文包括兩部分,每一部分的貢獻分別是在PNC 或MUD 系統中,針對上述問題的解決方案。 / 第一部分: 在本文的第一部分中,我們解決在PNC 系統中的聯合信道估計與信道譯碼問題。在PNC 系統中,多個用戶同時給中繼傳輸信號。PNC 系統的信道譯碼不同於傳統的多用戶系統的信道譯碼。具體地,中繼的目標是譯碼出網絡編碼後的信息而非單獨的每個源信息。雖然之前的研究工作顯示PNC 可以很大程度上提高中繼網絡的吞吐量,但是這個提高的前提假設是能夠獲得精確的信道估計。然而,因為以下原因,PNC系統中的信道估計尤其具有挑戰性:1)多個用戶的信號迭加在一起;2)信道編碼使得數據符號之間非獨立;3)信道是時變的。為解決這些難題,我們將expectation-maximization(EM)算法和belief propagation(BP)算法結合在一個統一的factor graph 框架之下。在這個factor graph 框架下,信道估計由EM subgraph 完成,信道譯碼由建模了和PNC 信道譯碼目標相匹配的虛擬編碼器的BP subgraph 完成。在兩個subgraph 的迭代消息傳輸使得我們可以逐漸逼近信道估計和信道譯碼的最優解。我們提供了大量的模擬結果來說明我們所提出方案的優越性。 / 第二部分: 在本文的第二部分中,我們研究了一個信道編碼的多用戶檢測(MUD)系統。該系統是基於正交頻分複用(OFDM)調製和交織分多址接入(IDMA)技術的。將OFDM與IDMA結合的動機是其可以在頻率選擇多址接入信道環境下獲得多用戶分集增益的能力。然而,為了實現這個能力,我們必須首先解決由多個載波頻率偏移(CFO)所引起的頻率異步問題。論文本部分解決如下挑戰。首先的挑戰是多信道參數(CFO,信道增益等)的估計。考慮到各個用戶的參數估計問題互相影響而導致總的參數估計誤差會隨用戶數目而增長,一個具體地難題是如何克制多個用戶多個參數的估計誤差。第二個挑戰是如何補償多個CFO。一個具體的難題是,不同於只存在一個CFO 的單用戶接收機,我們的多用戶接收機不可能同時補償多個不同的CFO。為解決以上兩個挑戰,我們提出了在一個多用戶系統中聯合、迭代解決多信道參數估計、CFO 補償和信道譯碼的框架。該框架利用了space alternating generalized expectation-maximization(SAGE)算法和expectation-conditional maximization (ECM)算法。我們的研究揭示,在ECM 算法中,將數據符號而非信道參數設置為hidden data 將導致更好的系統性能。進一步地,我們用Gaussian message passing 技術將算法複雜度有效降低。計算機仿真和軟件無線電平臺上的真實實驗表明,和傳統多用戶方法相比,我們方法能獲得非常高的性能增益。 / 總體來說,本文提出了兩個算法框架(EM-BP,SAGE-ECM)來解決聯合多參數估計和信道解碼問題。我們相信,針對多用戶系統中多個信號疊加而帶來的信號處理挑戰,我們所提算法框架是非常具有前景的解決方案。 / This thesis investigates the joint multiple parameter estimation and channel decoding problem for physical-layer network coding (PNC) and multiuser detection (MUD) systems. Both of PNC and MUD can take advantages from the simultaneous transmissions by multiple users. However, the superimposition of multiple transmissions brings with it new challenges for signal processing. The first major challenge is the estimation of the multiple parameters at the receiver. The second major challenge is how to compensate for system impairments caused by these parameters. This thesis consists of two parts that tackle these challenges: The first part is related to PNC systems and the second part is related to MUD systems. / Part I: The first part of this thesis addresses the problem of joint channel estimation and channel decoding in PNC systems. In PNC, multiple users transmit to a relay simultaneously. PNC channel decoding is different from conventional multiuser channel decoding: Specifically, the PNC relay aims to decode a network-coded message rather than the individual messages of the users. Although prior work has shown that PNC can significantly improve the throughput of a relay network, the improvement is predicated on the availability of accurate channel estimates. Channel estimation in PNC, however, can be particularly challenging because of 1) the overlapped signals of multiple users; 2) the correlations among data symbols induced by channel coding; and 3) time-varying channels. We combine the expectation-maximization (EM) algorithm and belief propagation (BP) algorithm on a unified factor-graph framework. In this framework, channel estimation is performed by an EM subgraph, and channel decoding is performed by a BP subgraph that models a virtual encoder matched to the target of PNC channel decoding. Iterative message passing between these two subgraphs allows the optimal solutions for both to be approached progressively. We present extensive simulation results demonstrating the superiority of our PNC receivers over other PNC receivers. / Part II: The second part of this thesis investigates a channel-coded MUD system operated with orthogonal frequency division multiplexing (OFDM) and interleaved division multiple-access (IDMA). In general, there are many variations to MUD systems. Our choice of the combination of OFDM and IDMA is motivated by its ability to achieve multiuser diversity gain in frequency-selective multiple-access channels. However, to realize this potential advantage of OFDM-IDMA, we must first solve the frequency asynchrony problem induced by the multiple carrier frequency offsets (CFOs) of the signals of multiple users. This part of the thesis tackles the following two major challenges. The first, as in PNC systems, is the estimation of multiple channel parameters (e.g., CFOs and channel gains). A particular challenge is how to contain the estimation errors of the channel parameters of the multiple users, considering that the overall estimation errors may increase with the number of users because the estimations of their channel parameters are intertwined with each other. The second is how to compensate for the multiple CFOs. A particular difficulty is that, different from a single-user receiver for which there is only one CFO, it is not possible for our multiuser receiver to compensate for all the multiple CFOs simultaneously. To tackle the two challenges, we put forth a framework that solves the joint problem of multiuser channel-parameter estimation, CFO compensation, and channel decoding iteratively by employing the space alternating generalized expectation-maximization (SAGE) and expectation-conditional maximization (ECM) algorithms. Our study reveals that treating the data rather than the channel parameters as the hidden data in ECM will lead to better performance. We further show that Gaussian message passing is an effective complexity reducing technique. Simulations and real experiments based on software-defined radio (SDR) indicate that, compared with other approaches, our approach can achieve significant performance gains. / Overall, this thesis puts forth two frameworks (EM-BP for PNC, SAGE-ECM for MUD) to address the problem of multiple parameter estimation and channel decoding. We believe our frameworks are promising solutions for the signal processing challenges arising from the superimposition of multiple transmissions in multiuser systems. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Wang, Taotao. / Thesis (Ph.D.) Chinese University of Hong Kong, 2015. / Includes bibliographical references (leaves 157-168). / Abstracts also in Chinese.
13

Effect of Interleaving and FEC on the throughput of CDMA Unslotted ALOHA System with Adaptive Multiuser Receiver

Okada, Hiraku, Yamazato, Takaya, Katayama, Masaaki 09 1900 (has links)
No description available.
14

Blind Adaptive Multiuser Detection for Synchronous DS-CDMA System

Huang, Zhi-Feng 22 June 2000 (has links)
In this thesis, we propose a modified blind adaptive approach to MAI cancellation for synchronous DS-CDMA systems, termed PCMA Approach. It has the same advantage as MOE and CMA of suppressing MAI without the explicit knowledge of interference parameters. We study the effect of arrival and departure of new users to the synchronous blind multiuser receivers, namely MOE and CMA. The perturbation caused by this sudden birth or death of interferers is examined from the viewpoint of the change of the cost function under the noiseless assumption. It is shown that in the vicinity of lock convergence, the changes in the CMA and MOE costs are the same if the perturbation is small enough. But it is also observed that the transient behavior of the CMA detector becomes significantly less robust as the existing number of users approaches the processing gain. To overcome this question of the CMA detector, we employ a projection matrix P that can remove the desired signal from the received signal with other interferers unchanged. Finally its performance has been demonstrated by numerical results in comparison with CMOE, ANMMSE, BAMMSE and Linear MMSE. The proposed receiver can combat MAI, approach the performance of Linear MMSE and have a higher capacity and fast convergence rate for a time-varying user population.
15

Adapitve Multiuser Receiver with RAKE Structure and Decision Feedback in Multiuser and Multipath Fading Environment

Chang, Jr-Wen 30 June 2000 (has links)
A review of adaptive decorrelating detector techniques for direct-sequence code division multiple access (CDMA) signals is given. The goal is to improve CDMA system performance and capacity by reducing interference between users. The techniques considered are implementations of multiuser receivers, for which background material is given. Adaptive algorithms improve the feasibility of such receivers. An adaptive multiuser receiver for CDMA system has been proposed to increase system capacity. The adaptive decorrelator can be used to eliminate interference from known interferers, though it is prone to noise enhancement. However the receiver is basically designed for synchronous CDMA over AWGN channels. In order to confirm the robustness of the receiver for the asynchronous cases, experimental evaluations are displayed when the relative user delays are small compared to the symbol duration and when the channel is Rayleigh multipath fading as in micro-cellular scenarios. In addition to the efficient implementation of the decorrelating detector of [1], the receiver also can be adapted to incorporate decision feedback. Successive interference cancellation techniques reduce interference by cancellation of one detected signal from another. And an efficient incorporation of decorrelator with RAKE and (DF) decision feedback receiver for frequency-selective Rayleigh fading multipath channels is also proposed. Performance evaluation of the detector via computer simulation scenarios is conducted to substantiate it's potential for real-time operation.
16

Constant modulus based blind adaptive multiuser detection.

January 2004 (has links)
Signal processing techniques such as multi user detection (MUD) have the capability of greatly enhancing the performance and capacity of future generation wireless communications systems. Blind adaptive MUD's have many favourable qualities and their application to OS-COMA systems has attracted a lot of attention. The constant modulus algorithm is widely deployed in blind channel equalizations applications. The central premise of this thesis is that the constant modulus cost function is very suitable for the purposes of blind adaptive MUD for future generation wireless communications systems. To prove this point, the adaptive performance of blind (and non-blind) adaptive MUD's is derived analytically for all the schemes that can be made to fit the same generic structure as the constant modulus scheme. For the first time, both the relative and absolute performance levels of the different adaptive algorithms are computed, which gives insights into the performance levels of the different blind adaptive MUD schemes, and demonstrates the merit of the constant modulus based schemes. The adaptive performance of the blind adaptive MUD's is quantified using the excess mean square error (EMSE) as a metric, and is derived for the steady-state, tracking, and transient stages of the adaptive algorithms. If constant modulus based MUD's are suitable for future generation wireless communications systems, then they should also be capable of suppressing multi-rate DS-COMA interference and also demonstrate the ability to suppress narrow band interference (NBI) that arises in overlay systems. Multi-rate DS-COMA provides the capability of transmitting at various bit rates and quality of service levels over the same air interface. Limited spectrum availability may lead to the implementation of overlay systems whereby wide-band COMA signal are collocated with existing narrow band services. Both overlay systems and multi-rate DS-COMA are important features of future generation wireless communications systems. The interference patterns generated by both multi-rate OS-COMA and digital NBI are cyclostationary (or periodically time varying) and traditional MUD techniques do not take this into account and are thus suboptimal. Cyclic MUD's, although suboptimal, do however take the cyclostationarity of the interference into account, but to date there have been no cyclic MUD's based on the constant modulus cost function proposed. This thesis thus derives novel, blind adaptive, cyclic MUD's based on the constant modulus cost function, for direct implementation on the FREquency SHift (FRESH) filter architecture. The FRESH architecture provides a modular and thus flexible implementation (in terms of computational complexity) of a periodically time varying filter. The operation of the blind adaptive MUD on these reduced complexity architectures is also explored.· The robustness of the new cyclic MUD is proven via a rigorous mathematical proof. An alternate architecture to the FRESH filter is the filter bank. Using the previously derived analytical framework for the adaptive performance of MUD's, the relative performance of the adaptive algorithms on the FRESH and filter bank architectures is examined. Prior to this thesis, no conclusions could be drawn as to which architecture would yield superior performance. The performance analysis of the adaptive algorithms is also extended in this thesis in order to consider the effects of timing jitrer at the receiver, signature waveform mismatch, and other pertinent issues that arise in realistic implementation scenarios. Thus, through a careful analytical approach, which is verified by computer simulation results, the suitability of constant modulus based MUD's is established in this thesis. / Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2004.
17

Uplink Multiuser Scheduling Techniques for Spectrum Sharing Systems

Qaraqe, Marwa 2012 August 1900 (has links)
This thesis focuses on the development of multiuser access schemes for spectrum sharing systems whereby secondary users that are randomly positioned over the coverage area are allowed to share the spectrum with primary users under the condition that the interference observed at the primary receiver is below a predetermined threshold. In particular, two scheduling schemes are proposed for selecting a user among those that satisfy the interference constraints and achieve an acceptable signal-to-noise ratio level above a predetermined signal-to-noise threshold at the secondary base station. The first scheme selects the user that reports the best channel quality. In order to alleviate the high feedback load required by the first scheme, a second scheme is proposed that is based on the concept of switched diversity where the base station scans the users in a sequential manner until an acceptable user is found. In addition, the proposed scheduling schemes operate under two power adaptive settings at the secondary users that are based on the amount of interference available at the secondary transmitter. In the On/Off power setting, users are allowed to transmit based on whether the interference constraint is met or not, while in the full power adaptive setting, users are allowed to vary their transmission power to satisfy the interference constraint. A special case of the proposed schemes is also analyzed whereby all the users are assumed to be at the same position, thus operating under the influence of independent and identically distributed Rayleigh fading channels. Finally, several numerical results are illustrated for the proposed algorithms where the trade-off between the average spectral efficiency and average feedback load of both schemes are shown.
18

Exploiting multiuser diversity with capture in wireless networks

Foo, Justin January 2009 (has links)
In a wireless network, owing to the time-varying nature of wireless channels, different mobile users typically experience peaks and troughs in channel quality at different times. This diversity in channel quality is known as multiuser diversity. With the aid of rate adaptation, multiuser diversity can be exploited by allowing the mobile user with the best channel to use the channel resource. However, in order to achieve this in most practical systems, the mobile users in the network must feed back their channel state information (CSI) to the transmitting user. In large networks, this feedback overhead can outweigh the multiuser diversity gain. In this thesis dissertation, a centralised wireless medium access control (MAC) scheme, namely Multiuser Diversity with Capture (MDC), is discussed as a solution to obviate the overhead problem. MDC explicitly employs the capture effect in radio receivers to reduce network overhead by allowing multiple mobile stations (MSs) with channels better than a nominal response threshold to simultaneously compete for the wireless channel. Owing to the capture effect, the base station (BS) can determine which MS has the best channel. In comparison with the Medium Access Diversity (MAD) scheme in the literature, the proposed MDC possesses the strong merit that the feedback overhead is independent of the number of MSs in the network. Several aspects of the MDC scheme are investigated in detail. An application of the MDC scheme based on the physical layer and parts of the MAC layer of the IEEE 802.11a standard is considered. A general analytical framework for the goodput performance of MDC is derived. Using this framework, the exact closed form solution for the expected goodput of MDC with rate adaptation over Rayleigh fading channels is calculated. The fairness performance of MDC in networks where some MSs experience better average channel conditions than others is also addressed. MSs with low average channel states tend to use the channel less often in MDC than MSs with high average channel states. This issue is tackled with Fairer Multiuser Diversity with Capture (FMDC), a variant of the MDC scheme designed to share the channel resource more equitably across all of the MSs in the network. In FMDC, instead of using the network-wide response threshold to decide whether to compete for the channel, each MS only competes for the channel when their channel state is greater than a threshold factor multiplied by their average channel state. Finally, the problem of adaptive optimisation of the response threshold for MDC and the threshold factor for FMDC is also considered. In the proposed solution, the response threshold and the threshold factor are adapted heuristically according to the estimated goodput performance of the system. The adaptive heuristic has importance in practical systems because the BS usually does not know the characteristics of the time varying channels of the MSs in the network.
19

Multi-user detection for multi-carrier communication systems

Hijazi, Samer L. January 1900 (has links)
Doctor of Philosophy / Department of Electrical and Computer Engineering / Balasubramaniam Natarajan / Wireless broadband communications is a rapidly growing industry. New enabling technologies such as multi-carrier code division multiple access (MC-CDMA) are shaping the future of wireless systems. However, research efforts in improving MC-CDMA receiver performance have received limited attention and there is a need for innovative receiver designs for next generation MC-CDMA. In this thesis, we propose novel multi-user detection (MUD) schemes to enhance the performance of both synchronous and asynchronous MC-CDMA. First, we adapt the ant colony optimization (ACO) approach to solve the optimal MUD problem in MC-CDMA systems. Our simulations indicate that the ACO based MUD converges to the optimal BER performance in relatively few iterations providing more that 95% savings in computational complexity. Second, we propose a new MUD structure specifically for asynchronous MC-CDMA. Previously proposed MUDs for asynchronous MC-CDMA perform the detection for one user (desired user) at a time, mandating multiple runs of the algorithm to detect all users' symbols. In this thesis, for the first time we present a MUD structure that detects all users' symbols simultaneously in one run by extending the receiver's integration window to capture the energy scattered in two consecutive symbol durations. We derive the optimal, decorrelator and minimum mean square error (MMSE) MUD for the extended window case. Our simulations demonstrate that the proposed MUD structures not only perform similar to a MUD that detects one user at a time, but its computational complexity is significantly lower. Finally, we extend the MUD ideas to multicarrier implementation of single carrier systems. Specifically, we employ the novel MUD structure as a multi-symbol detection scheme in CI-CDMA and illustrate the resulting performance gain via simulations.
20

SEMIBLIND MULTIUSER DETECTION FOR MC-CDMA

SHEN, HANHONG January 2005 (has links)
No description available.

Page generated in 0.0619 seconds