• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • Tagged with
  • 15
  • 15
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Constrição celular apical durante a invaginação do placóide do cristalino em galinhas. / Apical cell constriction during chicken lens placode invagination.

Borges, Ricardo Moraes 06 November 2008 (has links)
O cristalino de vertebrados se origina a partir da invaginação do ectoderme que recobre a vesícula óptica. A invaginação epitelial em diversos modelos é causada pela constrição celular apical, mediada pela contração apical de actina e miosina II e regulada pela GTPase RhoA. Neste trabalho nós investigamos se a invaginação do cristalino em embriões de galinha ocorre devido à constrição celular apical e se este evento é controlado por RhoA. Actina filamentosa e miosina II são expressas na porção apical do cristalino durante a invaginação. Quando a polimerização de actina é inibida por Citocalasina D, o cristalino não invagina, sugerindo que a constrição celular apical poderia contribuir para a invaginação do cristalino. RhoA também é expressa durante o desenvolvimento do cristalino, mas a inibição de RhoA, por eletroporação da forma dominante-negativo, não impediu a invaginação do placóide do cristalino, não alterou a distribuição de miosina II na porção apical do cristalino nem sua ativação, indicando que a invaginação do cristalino independe de RhoA. / Vertebrate lens derives from invagination of the ectoderm that overlies optic vesicles. Epithelial invagination in many model systems is driven by apical cell constriction, mediated by actin and myosin II contraction regulated by GTPase RhoA. Here we investigate the possibility that chick lens placode invagination could also be driven by apical cell constriction and controlled by RhoA. We show that actin and myosin II are expressed at lens apical side during lens invagination. Actin polymerization inhibition by in ovo Cytochalasin D treatment prevents lens placode invagination, suggesting that lens placode invagination could be driven by apical cell constriction. RhoA GTPase is also expressed at apical portion of lens placode and during lens invagination. However, when we overexpressed by electroporation the dominant-negative RhoA in the pre-lens ectoderm invagination was not affected. Furthermore, dominant-negative RhoA didnt affect myosin II apical localization nor myosin II phosphorilation, indicating that in lens invagination this process is not regulated by GTPase RhoA.
12

Constrição celular apical durante a invaginação do placóide do cristalino em galinhas. / Apical cell constriction during chicken lens placode invagination.

Ricardo Moraes Borges 06 November 2008 (has links)
O cristalino de vertebrados se origina a partir da invaginação do ectoderme que recobre a vesícula óptica. A invaginação epitelial em diversos modelos é causada pela constrição celular apical, mediada pela contração apical de actina e miosina II e regulada pela GTPase RhoA. Neste trabalho nós investigamos se a invaginação do cristalino em embriões de galinha ocorre devido à constrição celular apical e se este evento é controlado por RhoA. Actina filamentosa e miosina II são expressas na porção apical do cristalino durante a invaginação. Quando a polimerização de actina é inibida por Citocalasina D, o cristalino não invagina, sugerindo que a constrição celular apical poderia contribuir para a invaginação do cristalino. RhoA também é expressa durante o desenvolvimento do cristalino, mas a inibição de RhoA, por eletroporação da forma dominante-negativo, não impediu a invaginação do placóide do cristalino, não alterou a distribuição de miosina II na porção apical do cristalino nem sua ativação, indicando que a invaginação do cristalino independe de RhoA. / Vertebrate lens derives from invagination of the ectoderm that overlies optic vesicles. Epithelial invagination in many model systems is driven by apical cell constriction, mediated by actin and myosin II contraction regulated by GTPase RhoA. Here we investigate the possibility that chick lens placode invagination could also be driven by apical cell constriction and controlled by RhoA. We show that actin and myosin II are expressed at lens apical side during lens invagination. Actin polymerization inhibition by in ovo Cytochalasin D treatment prevents lens placode invagination, suggesting that lens placode invagination could be driven by apical cell constriction. RhoA GTPase is also expressed at apical portion of lens placode and during lens invagination. However, when we overexpressed by electroporation the dominant-negative RhoA in the pre-lens ectoderm invagination was not affected. Furthermore, dominant-negative RhoA didnt affect myosin II apical localization nor myosin II phosphorilation, indicating that in lens invagination this process is not regulated by GTPase RhoA.
13

Tumour-selective apoptosis : identification of NMHCIIa as novel death receptor interactor regulating the response to TRAIL

Schulz, Cathrin 26 September 2012 (has links) (PDF)
The cytokine TRAIL is a promising cancer therapeutic candidate as it induces apoptosis selectively in transformed cells. TRAIL-induced clustering of its receptors (DR) is essential for the DISC complex formation, which induces cell death. The mechanism for TRAIL's tumour selective effect is largely unknown. We identified the cytoskeleton proteins non-muscle myosin heavy chain IIa, IIb (NMHCIIa, NMHCIIb), myosin regulatory light chain (MLC2) and ß-actin as novel DR-interactors. An initially weak and TRAIL-induced abrogation of NMHCII/DR interaction correlated with efficient DISC formation in tumour cells. In contrast, a robust NMHCII/DR interaction that was sustained upon TRAIL stimulus was accompanied by incomplete DISC arrangement. Weakening the NMHCII/DR interaction in normal cells using chemical inhibitors enhanced TRAIL-induced apoptosis. Intriguingly, siRNA-mediated NMHCIIa- but not NMHCIIb depletion potently released TRAIL resistance in normal cells and influenced DISC composition. Reduced NMHCII/DR interaction in transformed cells was characterised by diminished MLC2 phosphorylation and altered protein expression of upstream regulatory kinases. Our results suggest that normal cell resistance to TRAIL-apoptosis is based on the interaction of cytoskeleton components with DR that is impaired upon transformation. Since NMHCII function in cell adhesion and migration, it will be interesting to study possible roles of the interaction in cell detachment and altered TRAIL sensitivity; moreover this link may provide clues as to the cause of TRAIL resistance in some cancers.
14

Characterizing cortical myosin mini-filament regulation, length and its macroscopic implications in cytokinetic dynamics

Patino Descovich, Carlos 09 1900 (has links)
No description available.
15

The Development and Regeneration of the Serotonergic System

Hawthorne, Alicia Lynn 06 July 2010 (has links)
No description available.

Page generated in 0.0453 seconds