• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 51
  • 19
  • 16
  • 12
  • 11
  • 10
  • 9
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Regulation of Skeletal Muscle Formation and Regeneration by the Cellular Inhibitor of Apoptosis 1 (cIAP1) Protein

Enwere, Emeka K. 01 June 2011 (has links)
The inhibitor of apoptosis (IAP) proteins traditionally regulate programmed cell death by binding to and inhibiting caspases. Recent studies have uncovered a variety of alternate cellular roles for several IAP family members. The cellular inhibitor of apoptosis 1 (cIAP1) protein, for instance, regulates different axes of the NF-κB signalling pathway. Given the extensive functions of NF-κB signalling in muscle differentiation and regeneration, I asked if cIAP1 also plays critical roles in skeletal muscle myogenesis. In a primary myoblast cell-culture system, genetic and pharmacological approaches revealed that loss of cIAP1 dramatically increases the fusion of myoblasts into myotubes. NF-κB signalling occurs along a classical and an alternative pathway, both of which are highly active in cIAP1-/- myoblasts. Suppression of the alternative pathway attenuates myotube fusion in wildtype and cIAP1-/- myoblasts. Conversely, constitutive activation of the alternative pathway increases myoblast fusion in wildtype myoblasts. cIAP1-/- mice have greater muscle weight and size than wildtypes, as well as an increased number of muscle stem cells. These results identify cIAP1 as a regulator of myogenesis through its modulation of classical and alternative NF-κB signalling pathways. Loss of the structural protein dystrophin in the mdx mouse model of Duchenne muscular dystrophy leads to chronic degeneration of skeletal muscle. The muscle pathology is strongly influenced by NF-κB signaling. Given the roles demonstrated for cIAP1 in cell culture and in vivo, I asked whether loss of cIAP1 would influence muscle pathology in the mdx mouse. To address this question, double-mutant mice were bred lacking both cIAP1 and dystrophin (cIAP1-/-;mdx). Histological analyses revealed that double-mutant mice exhibited reduced indications of damage on several measures, as compared to single-mutant (cIAP1+/+;mdx) controls. Unexpectedly, these reductions were seen in the “slow-twitch” soleus muscle but not in the “fast-twitch” extensor digitorum longus (EDL) muscle. The improvements in pathology of double-mutant solei were associated with reductions in muscle infiltration by CD68-expressing macrophages. Finally, the double-mutant mice exhibited improved endurance and resistance to damage during treadmill-running exercise. Taken together, these results suggest that loss of cIAP1, through its multiple regulatory functions, acts to improve myogenesis and increase muscle resistance to damage.
12

Regulation of Skeletal Muscle Formation and Regeneration by the Cellular Inhibitor of Apoptosis 1 (cIAP1) Protein

Enwere, Emeka K. 01 June 2011 (has links)
The inhibitor of apoptosis (IAP) proteins traditionally regulate programmed cell death by binding to and inhibiting caspases. Recent studies have uncovered a variety of alternate cellular roles for several IAP family members. The cellular inhibitor of apoptosis 1 (cIAP1) protein, for instance, regulates different axes of the NF-κB signalling pathway. Given the extensive functions of NF-κB signalling in muscle differentiation and regeneration, I asked if cIAP1 also plays critical roles in skeletal muscle myogenesis. In a primary myoblast cell-culture system, genetic and pharmacological approaches revealed that loss of cIAP1 dramatically increases the fusion of myoblasts into myotubes. NF-κB signalling occurs along a classical and an alternative pathway, both of which are highly active in cIAP1-/- myoblasts. Suppression of the alternative pathway attenuates myotube fusion in wildtype and cIAP1-/- myoblasts. Conversely, constitutive activation of the alternative pathway increases myoblast fusion in wildtype myoblasts. cIAP1-/- mice have greater muscle weight and size than wildtypes, as well as an increased number of muscle stem cells. These results identify cIAP1 as a regulator of myogenesis through its modulation of classical and alternative NF-κB signalling pathways. Loss of the structural protein dystrophin in the mdx mouse model of Duchenne muscular dystrophy leads to chronic degeneration of skeletal muscle. The muscle pathology is strongly influenced by NF-κB signaling. Given the roles demonstrated for cIAP1 in cell culture and in vivo, I asked whether loss of cIAP1 would influence muscle pathology in the mdx mouse. To address this question, double-mutant mice were bred lacking both cIAP1 and dystrophin (cIAP1-/-;mdx). Histological analyses revealed that double-mutant mice exhibited reduced indications of damage on several measures, as compared to single-mutant (cIAP1+/+;mdx) controls. Unexpectedly, these reductions were seen in the “slow-twitch” soleus muscle but not in the “fast-twitch” extensor digitorum longus (EDL) muscle. The improvements in pathology of double-mutant solei were associated with reductions in muscle infiltration by CD68-expressing macrophages. Finally, the double-mutant mice exhibited improved endurance and resistance to damage during treadmill-running exercise. Taken together, these results suggest that loss of cIAP1, through its multiple regulatory functions, acts to improve myogenesis and increase muscle resistance to damage.
13

The Effect of Mitochondrial Biogenesis on Apoptotic Susceptibility in L6 Myoblasts

Dam, Aaron 08 September 2010 (has links)
Mitochondria play an essential role in cell metabolism as well as apoptotic signaling. Chronic endurance exercise has been shown to increase mitochondrial content in skeletal muscle. Interestingly, endurance exercise has also been associated with decreased skeletal muscle apoptosis; however, the direct effect of increased skeletal muscle mitochondrial content on apoptotic signaling has not been examined. The purpose of this study was to induce mitochondrial biogenesis in L6 myoblasts and examine the susceptibility of these cells to stress- induced apoptosis. Mitochondrial biogenesis was accomplished using 5-Aminoimidazole-4-carboxamide-ribonucleoside (AICAR) and S-nitroso-N-acetylpenicillamine (SNAP), which activate AMPK and donate nitric oxide, respectively. Successful induction of mitochondrial biogenesis was determined by western blot analysis for mitochondrial specific markers. Following SNAP and AICAR treatment, the average increase in the mitochondrial markers was 24% and 38%, respectively. Subsequent exposure of cells to several apoptosis-inducing agents increased apoptosis. Interestingly, SNAP- and AICAR- treated cells had a lower percentage of apoptotic cells as determined by AnnexinV-FITC/PI fluorescent staining, cell cycle analysis, and cell counting/size analysis. In addition, it was shown that SNAP- and AICAR-treated cells had reduced caspase-3 activity following exposure to apoptotic stimuli. Furthermore, treatment with SNAP and AICAR resulted in increased protein content of the antioxidants MnSOD and catalase. Interestingly, mitochondrial ROS production was not significantly altered between groups with total cellular ROS production being increased in the SNAP- and AICAR-treated groups. In summary, this work demonstrates that increasing mitochondrial content in L6 myoblasts provides protection against stress-induced apoptosis. The mechanism for this protective effect remains to be determined; however, it may be mediated by a combination of increased antioxidant capacity and improved mitochondrial calcium buffering capacity.
14

The Effect of Mitochondrial Biogenesis on Apoptotic Susceptibility in L6 Myoblasts

Dam, Aaron 08 September 2010 (has links)
Mitochondria play an essential role in cell metabolism as well as apoptotic signaling. Chronic endurance exercise has been shown to increase mitochondrial content in skeletal muscle. Interestingly, endurance exercise has also been associated with decreased skeletal muscle apoptosis; however, the direct effect of increased skeletal muscle mitochondrial content on apoptotic signaling has not been examined. The purpose of this study was to induce mitochondrial biogenesis in L6 myoblasts and examine the susceptibility of these cells to stress- induced apoptosis. Mitochondrial biogenesis was accomplished using 5-Aminoimidazole-4-carboxamide-ribonucleoside (AICAR) and S-nitroso-N-acetylpenicillamine (SNAP), which activate AMPK and donate nitric oxide, respectively. Successful induction of mitochondrial biogenesis was determined by western blot analysis for mitochondrial specific markers. Following SNAP and AICAR treatment, the average increase in the mitochondrial markers was 24% and 38%, respectively. Subsequent exposure of cells to several apoptosis-inducing agents increased apoptosis. Interestingly, SNAP- and AICAR- treated cells had a lower percentage of apoptotic cells as determined by AnnexinV-FITC/PI fluorescent staining, cell cycle analysis, and cell counting/size analysis. In addition, it was shown that SNAP- and AICAR-treated cells had reduced caspase-3 activity following exposure to apoptotic stimuli. Furthermore, treatment with SNAP and AICAR resulted in increased protein content of the antioxidants MnSOD and catalase. Interestingly, mitochondrial ROS production was not significantly altered between groups with total cellular ROS production being increased in the SNAP- and AICAR-treated groups. In summary, this work demonstrates that increasing mitochondrial content in L6 myoblasts provides protection against stress-induced apoptosis. The mechanism for this protective effect remains to be determined; however, it may be mediated by a combination of increased antioxidant capacity and improved mitochondrial calcium buffering capacity.
15

Regulation of Skeletal Muscle Formation and Regeneration by the Cellular Inhibitor of Apoptosis 1 (cIAP1) Protein

Enwere, Emeka K. 01 June 2011 (has links)
The inhibitor of apoptosis (IAP) proteins traditionally regulate programmed cell death by binding to and inhibiting caspases. Recent studies have uncovered a variety of alternate cellular roles for several IAP family members. The cellular inhibitor of apoptosis 1 (cIAP1) protein, for instance, regulates different axes of the NF-κB signalling pathway. Given the extensive functions of NF-κB signalling in muscle differentiation and regeneration, I asked if cIAP1 also plays critical roles in skeletal muscle myogenesis. In a primary myoblast cell-culture system, genetic and pharmacological approaches revealed that loss of cIAP1 dramatically increases the fusion of myoblasts into myotubes. NF-κB signalling occurs along a classical and an alternative pathway, both of which are highly active in cIAP1-/- myoblasts. Suppression of the alternative pathway attenuates myotube fusion in wildtype and cIAP1-/- myoblasts. Conversely, constitutive activation of the alternative pathway increases myoblast fusion in wildtype myoblasts. cIAP1-/- mice have greater muscle weight and size than wildtypes, as well as an increased number of muscle stem cells. These results identify cIAP1 as a regulator of myogenesis through its modulation of classical and alternative NF-κB signalling pathways. Loss of the structural protein dystrophin in the mdx mouse model of Duchenne muscular dystrophy leads to chronic degeneration of skeletal muscle. The muscle pathology is strongly influenced by NF-κB signaling. Given the roles demonstrated for cIAP1 in cell culture and in vivo, I asked whether loss of cIAP1 would influence muscle pathology in the mdx mouse. To address this question, double-mutant mice were bred lacking both cIAP1 and dystrophin (cIAP1-/-;mdx). Histological analyses revealed that double-mutant mice exhibited reduced indications of damage on several measures, as compared to single-mutant (cIAP1+/+;mdx) controls. Unexpectedly, these reductions were seen in the “slow-twitch” soleus muscle but not in the “fast-twitch” extensor digitorum longus (EDL) muscle. The improvements in pathology of double-mutant solei were associated with reductions in muscle infiltration by CD68-expressing macrophages. Finally, the double-mutant mice exhibited improved endurance and resistance to damage during treadmill-running exercise. Taken together, these results suggest that loss of cIAP1, through its multiple regulatory functions, acts to improve myogenesis and increase muscle resistance to damage.
16

Regulation of Skeletal Muscle Formation and Regeneration by the Cellular Inhibitor of Apoptosis 1 (cIAP1) Protein

Enwere, Emeka K. January 2011 (has links)
The inhibitor of apoptosis (IAP) proteins traditionally regulate programmed cell death by binding to and inhibiting caspases. Recent studies have uncovered a variety of alternate cellular roles for several IAP family members. The cellular inhibitor of apoptosis 1 (cIAP1) protein, for instance, regulates different axes of the NF-κB signalling pathway. Given the extensive functions of NF-κB signalling in muscle differentiation and regeneration, I asked if cIAP1 also plays critical roles in skeletal muscle myogenesis. In a primary myoblast cell-culture system, genetic and pharmacological approaches revealed that loss of cIAP1 dramatically increases the fusion of myoblasts into myotubes. NF-κB signalling occurs along a classical and an alternative pathway, both of which are highly active in cIAP1-/- myoblasts. Suppression of the alternative pathway attenuates myotube fusion in wildtype and cIAP1-/- myoblasts. Conversely, constitutive activation of the alternative pathway increases myoblast fusion in wildtype myoblasts. cIAP1-/- mice have greater muscle weight and size than wildtypes, as well as an increased number of muscle stem cells. These results identify cIAP1 as a regulator of myogenesis through its modulation of classical and alternative NF-κB signalling pathways. Loss of the structural protein dystrophin in the mdx mouse model of Duchenne muscular dystrophy leads to chronic degeneration of skeletal muscle. The muscle pathology is strongly influenced by NF-κB signaling. Given the roles demonstrated for cIAP1 in cell culture and in vivo, I asked whether loss of cIAP1 would influence muscle pathology in the mdx mouse. To address this question, double-mutant mice were bred lacking both cIAP1 and dystrophin (cIAP1-/-;mdx). Histological analyses revealed that double-mutant mice exhibited reduced indications of damage on several measures, as compared to single-mutant (cIAP1+/+;mdx) controls. Unexpectedly, these reductions were seen in the “slow-twitch” soleus muscle but not in the “fast-twitch” extensor digitorum longus (EDL) muscle. The improvements in pathology of double-mutant solei were associated with reductions in muscle infiltration by CD68-expressing macrophages. Finally, the double-mutant mice exhibited improved endurance and resistance to damage during treadmill-running exercise. Taken together, these results suggest that loss of cIAP1, through its multiple regulatory functions, acts to improve myogenesis and increase muscle resistance to damage.
17

Control of sex myoblast migration in C. elegans

Zhang, Sihui 01 August 2013 (has links)
Cell migration is critical in generating complex animal forms during development; misregulation of migration contributes to pathological conditions such as cancer metastasis. Thanks to its easily traceable cell lineages in a transparent body and a compact genome accessible to a wealth of genetic manipulations, the use of the nematode C. elegans as a model system has greatly advanced our understanding of mechanisms governing cell migration conserved through higher organisms. Among several migration processes in C. elegans, sex myoblast (SM) migration is an attractive system that has a simple and well-defined migratory route along the ventral side from the posterior to the precise center of the gonad. A multitude of guidance mechanisms control SM migration, many of which are likely to be conserved in other migratory processes. Similar to vertebrate systems, C. elegans uses Rho family small GTPases to regulate the engine of cell motility, the actin cytoskeleton, in response to guidance cues. The differential utilizations of Rho GTPases in distinct processes in vivo remain a central question in the study of Rho GTPases. I investigated how Rho GTPases regulate different aspects of SM migration, and found that Cdc-42/CDC42 functions in the anteroposterior migration, whereas MIG-2/RhoG and CED-10/Rac1 control ventral restriction independently of FGF and SLIT/Robo signaling. The relative difficulty in perturbing SM migration using constitutively active Rho GTPases compared to other migration processes illustrates the robustness of the mechanisms that control SM migration. On a technical aspect, I established a nematode larval cell culture system that allows access to postembryonic cells. Compared to the flourishing genetic researches in C. elegans, there are few studies of molecules that also extend to the subcellular level in postembryonic development, mainly due to the lack of a larval cell culture system. I developed a novel method combining SDS-DTT presensitization of larval cuticles and subsequent pronase E digestion. My method efficiently isolates both low- and high-abundance cell types from all larval stages. This technical advance will not only facilitate studies such as regulation of actin dynamics with high-resolution microscopy, but is beginning to be used by researchers to tackle cell-type specific questions through profiling methods as gene expression analysis. / Ph. D.
18

Tweak and cIAP1 Mediate Alternative NF-κB Signalling to Promote Myogenesis

Adam, Nadine Jessica January 2016 (has links)
The NF-κB family of transcription factors can be activated through canonical (classical) or non-canonical (alternative) signalling pathways, which are regulated by the redundant ubiquitin ligases, cellular inhibitor of apoptosis 1 and 2 (cIAP1 and cIAP2). While the canonical NF-κB pathway is needed for myoblast proliferation, it is inactivated during myoblast differentiation. However, the non-canonical NF-κB pathway is a major factor in promoting myoblast fusion, which is crucial to the processes of myogenesis and muscle repair. Ablation of cIAP1 levels through a chemical antagonist such as a SMAC- mimetic compound (SMC) activates non-canonical signalling to enhance myogenesis. The cytokine TNF-like weak inducer of apoptosis (TWEAK) has also been shown to activate primarily the alternative NF-κB pathway when signalling through its receptor Fn14. Here I show that alternative NF-κB signalling activity, stimulated by the addition of TWEAK or loss of cIAP1, can promote myogenesis. I also demonstrate that TWEAK is an endogenous myokine produced by myoblasts to promote their own differentiation, and suggest that targeting the alternative NF-κB pathway, with SMAC-mimetics or recombinant TWEAK for example, would be of therapeutic value in the repair and regeneration of muscle for various myopathies.
19

Survival and Differentiation of Implanted Skeletal Myoblasts in the Native and in the Cryoinjured Myocardium

Razvadauskaite, Giedre 06 January 2003 (has links)
Myocardial infarction results in tissue necrosis, leading to cell loss and ultimately to cardiac failure. Implantation of immature progenitor cells into the scar area may compensate for the cell loss and provides a new therapeutic avenue for infarct treatment. Premature myoblasts derived from skeletal muscle are one of the best candidates for this therapeutic purpose, because biopsies used for autologous cell therapy can be accessed easily, the isolated myoblasts can proliferate well in vitro, and the skeletal and cardiac muscles are structurally and functionally similar. In this study we investigated the survival and differentiation of the implanted skeletal myoblasts in the non-cryoinjured myocardium and the myocardial scar, using a syngeneic Lewis rat model. A therapeutic dose of 4x106 skeletal myoblasts/animal was implanted into the non-cryoinjured and scar tissue, and the fate of the implant was monitored at 12, 28 and 56 days after implantation by immunohistochemistry. We detected fast myosin heavy chain (fMHC) expression at each time point but significantly fewer positive cells in the scar than in the non-injured tissue. This was consistent with the staining patterns of slow myosin heavy chain (sMHC) and myogenin that overlapped with fMHC positive areas. Although the implanted myoblasts differentiated into skeletal muscle cells, they did not transdifferentiate into cardiac muscle, demonstrated by the absence of cardiac troponin I expression. During this analysis we developed a model, which could be useful to test new strategies for myoblast implantation (dosage, genetic modification, new injection technique etc.) designed to promote better engraftment of cultured myoblasts in the myocardial scar.
20

Analysis of Sex Myoblast Migration in mir-44/45 C. elegans Mutants

Theiss, Julia 01 January 2019 (has links)
microRNAs are single-stranded small RNAs that function as post-transcriptional regulators of gene expression. We are studying the mir-44 family, specifically mir-44 and mir-45, which have identical sequence. Loss of mir-44 and mir-45 results in defects that suggest that the mir-44 family acts to negatively regulate the MAPK pathway. The MAPK pathway regulates sex myoblast migration, a process which is required for normal egg laying. We hypothesized that the mir-44 family of microRNAs is necessary for normal sex myoblast migration and subsequent formation of the functional egg laying structure in the hermaphrodite. We created a mutant that had mutations in both mir-44 and mir-45 and a transgene that expresses GFP in the sex myoblast cells. Then we observed the migration and division of the sex myoblasts in wild-type and mutant worms using fluorescence microscopy. In all cases, the mutant worms displayed a greater percent difference from average sex myoblast migration and division. However, a two-tailed two-proportions z-test found no significant difference between wild type and mutant sex myoblast migration (p=0.9148), nor in mutant sex myoblast division along the axial (p=0.4205) and sagittal (p=0.3583) planes of the body. This allows us to conclude that mir-44 and mir-45 are unlikely to be responsible for the migration nor division of the sex myoblasts, and the defects are likely due to interference with a different biological mechanism.

Page generated in 0.0477 seconds