• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Sensor Fusion for Closed-loop Control of Upper-limb Prostheses

Markovic, Marko 18 April 2016 (has links)
No description available.
12

Etude du contrôle sensorimoteur dans un contexte artificiel simplifié en vue d'améliorer le contrôle des prothèses myoélectriques. / Sensorimotor control in a simplified artificial context to improve the control of future myoelectric prosthesis.

Couraud, Mathilde 07 December 2018 (has links)
L'amputation du membre supérieur, dont la prévalence est comparable à celle des maladies orphelines, induit chez les patients une perte considérable d'autonomie dans la majorité des tâches simples de la vie quotidienne. Pour pallier ces difficultés, les prothèses myoélectriques actuelles proposent une multitude de mouvements possibles. Cependant, leur contrôle non intuitif et lourd cognitivement requiert un apprentissage long et difficile, qui pousse une proportion importante de patients amputés à l'abandon de la prothèse. Dans cette thèse, nous avons cherché à identifier l'origine des difficultés et les manques du contrôle myoélectrique en comparaison au contrôle sensorimoteur naturel, dans le but à terme de proposer de meilleures solutions de restitution et de suppléance. Pour cela, nous avons manipulé diverses conditions expérimentales dans un contexte d'interface homme-machine simplifié où des sujets non amputés contrôlent un curseur sur un écran à partir de contractions isométriques, i.e. des contractions qui n'engendrent pas de mouvement. Cette condition isométrique nous a permis de nous approcher de la condition de la personne amputée contrôlant sa prothèse à partir de l'activité électrique (EMG) de ses muscles résiduels, en absence de mouvement articulaire. Durant une tâche d'atteinte de cible, nous avons entre autre démontré le bénéfice d'une adaptation conjointe du décodeur qui traduit les activités EMG en mouvement du curseur, venant s'ajouter à la propre adaptation du plan de mouvement des sujets en réponse à des perturbations orientées. De plus, il a été mis en évidence que ce bénéfice est d'autant plus important que la dynamique d'adaptation artificielle du décodeur s'inspire de celle de l'Homme. Dans des tâches d'acquisition et de poursuite de cible, impliquant davantage les mécanismes de régulation en ligne du mouvement, nous avons mis en évidence l'importance d'une congruence immédiate entre les informations sensorimotrices et la position du curseur à l'écran pour permettre des corrections rapides et efficaces. Dans une condition où le niveau de bruit du système est relativement faible, comme avec l'utilisation du signal de forces plus stable que l'habituel signal EMG, cette congruence explique, en partie, la supériorité d'un contrôle d'ordre 0 (i.e. position) sur un contrôle d'ordre 1 (i.e.} vitesse). Cependant, dès lors que le niveau de bruit est trop important, ce qui est le cas avec le signal EMG, le filtrage induit par l'intégration nécessaire au contrôle vitesse fait que celui-ci devient plus performant que le contrôle position. L'ensemble de ces résultats suggèrent qu'un décodeur adaptatif et intuitif, respectant et suppléant au mieux les boucles du contrôle sensorimoteur naturel, est le plus à même de faciliter le contrôle des futures prothèses. / Upper limb amputation, although quite rare, induces enormous loss of autonomy for patients in most daily life activities. To overcome this loss, current myoelectric prosthesis offers a multitude of possible movements. However, current controls of these movements are typically non-intuitive and cognitively demanding, leading to a high abandon rate in response to the long and tedious learning involved. In this thesis, we aimed at identifying difficulties and gaps associated with myoelectric controls when compared to natural sensorimotor control, with the long term goal of informing the design of better solutions for prosthesis control. To do so, we manipulated several experimental conditions in a simplified human-machine interface, where non-amputated subjects controlled a cursor on a computer screen from isometric contractions, i.e. muscle contractions produced in the absence of joint movement. This isometric condition was designed to get closer to a situation in which an amputee controls a myoelectric prosthesis using electrical activity (EMG) of his/her residual muscles, without movement of the missing limb. During aiming movements, we demonstrated the benefits of adapting the decoder that translate muscle activities into cursor movement in conjunction with the own subject’s adaptation of the planned movement direction in response to oriented perturbations. Furthermore, these benefits were showed to be even more important as the artificial decoder adaptation was inspired by the modeled adaptation of a human. In reaching and tracking movements toward fixed and moving targets, which increasingly involve online movement regulations, we revealed the importance of an immediate congruency between sensorimotor information and the cursor position on the screen for timely and efficient corrections. For conditions in which the level of noise associated with the control signal is relatively low, such as when using force that is more stable than the usual EMG signal used, this congruency partly explains the better performance obtained with zero order control (i.e. position) when compared to first order control (i.e. velocity). However, when the noise level increases, as is the case with EMG signals, the filtering property associated with the integration involved in a velocity control elicits better performances than with a position control. Taken together, these results suggest that intuitive and adaptive decoder, that supplies and judiciously complements natural sensorimotor feedback loops, is promising to facilitate future prosthesis controls.
13

High-density stretchable microelectrode arrays: an integrated technology platform for neural and muscular surface interfacing

Guo, Liang 04 April 2011 (has links)
Numerous applications in neuroscience research and neural prosthetics, such as retinal prostheses, spinal-cord surface stimulation for prosthetics, electrocorticogram (ECoG) recording for epilepsy detection, etc., involve electrical interaction with soft excitable tissues using a surface stimulation and/or recording approach. These applications require an interface that is able to set up electrical communications with a high throughput between electronics and the excitable tissue and that can dynamically conform to the shape of the soft tissue. Being a compliant and biocompatible material with mechanical impedance close to that of soft tissues, polydimethylsiloxane (PDMS) offers excellent potential as the substrate material for such neural interfaces. However, fabrication of electrical functionalities on PDMS has long been very challenging. This thesis work has successfully overcome many challenges associated with PDMS-based microfabrication and achieved an integrated technology platform for PDMS-based stretchable microelectrode arrays (sMEAs). This platform features a set of technological advances: (1) we have fabricated uniform current density profile microelectrodes as small as 10 microns in diameter; (2) we have patterned high-resolution (feature as small as 10 microns), high-density (pitch as small as 20 microns) thin-film gold interconnects on PDMS substrate; (3) we have developed a multilayer wiring interconnect technology within the PDMS substrate to further boost the achievable integration density of such sMEA; and (4) we have invented a bonding technology---via-bonding---to facilitate high-resolution, high-density integration of the sMEA with integrated circuits (ICs) to form a compact implant. Taken together, this platform provides a high-resolution, high-density integrated system solution for neural and muscular surface interfacing. sMEAs of example designs are evaluated through in vitro and in vivo experimentations on their biocompatibility, surface conformability, and surface recording/stimulation capabilities, with a focus on epimysial (i.e. on the surface of muscle) applications. Finally, as an example medical application, we investigate a prosthesis for unilateral vocal cord paralysis (UVCP) based on simultaneous multichannel epimysial recording and stimulation.

Page generated in 0.093 seconds