• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Acoustic wave interactions with viscous liquids spreading in the acoustic path of a surface acoustic wave sensor

Banerjee, Markus K. January 1999 (has links)
No description available.
2

Implantation of Biocompatible Fibers for the Coupling of Muscle Groups

Franklin, Jeff E. 27 September 2005 (has links)
No description available.
3

Linear free energy relationship analysis of permeability across polydimethylsiloxane (PDMS) membranes and comparison with human skin permeation in vitro

Liu, Xiangli, Zhang, K., Abraham, M.H. 11 August 2018 (has links)
No / The aim of the present work is to evaluate the similarity between PDMS membranes and human skin in vitro in permeation study by linear free energy relationship (LFER) analyses. The values of the permeability coefficient log Kp (cm/s) under reliable experimental conditions were collected from the literature for a set of 94 compounds including both neutral and ionic species, which cover a broad range of structural diversity. The values of log Kp (cm/s) have been correlated with Abraham descriptors to yield an equation with R2 = 0.952 and SD = 0.38 log units. The established LFER model for log Kp (cm/s) across PDMS membranes showed no close analogy with that through human skin in vitro. A further critical analysis of the coefficients of the LFER models confirmed that the PDMS permeation system is a very poor model for human skin permeation.
4

Phase and Rheological Behavior of Langmuir Films at the Air/Water Interface: Polyhederal Oligomeric Silsesquioxanes (POSS), POSS/Polymer Blends, and Magnetic Nanoparticles

Yin, Wen 12 June 2009 (has links)
For over a century, Langmuir films have served as excellent two-dimensional model systems for studying the conformation and ordering of amphiphilic molecules at the air/water (A/W) interface. With the equipment of Wilhelmy plate technique, Brewster angle microscopy (BAM), and surface light scattering (SLS), the interfacial phase and rheological behavior of Langmuir films can be investigated. In this dissertation, these techniques are employed to examine Langmuir films of polyhedral oligomeric silsesquioxane (POSS), polymer blends, and magnetic nanoparticles (MNPs). In a first time, SLS is employed to study POSS molecules. The interfacial rheological properties of trisilanolisobutyl-POSS (TiBuP) indicate that TiBuP forms a viscoelastic Langmuir film that is almost perfectly elastic in the monolayer state with a maximum dynamic dilational elasticity of around 50 mNâ m-1 prior to film collapse. This result suggests that TiBuP can serve as model nanofiller with polymers. As an interesting next step, blends of TiBuP and polydimethylsiloxane (PDMS) with different compositions are examined via surface pressure (surface pressureâ surface area occupied per molecule (A) isotherms and SLS. The results show that TiBuP, with its attendant water, serves as a plasticizer and lowers the dilational modulus of the films at low surface pressure. As surface pressure increases, composition dependent behavior occurs. Around the collapse pressure of PDMS, the TiBuP component is able to form networks at the A/W interface as PDMS collapse into the upper layer. Blends of non-amphiphilic octaisobutyl-POSS (OiBuP) and PDMS are also studied as an interesting comparison to TiBuP/PDMS blends. In these blends, OiBuP serves as a filler and reinforces the blends prior to the collapse of PDMS by forming "bridge" structure on top of PDMS monolayer. However, OiBuP is non-amphiphilic and fails to anchor PDMS chains to the A/W interface. Hence, OiBuP/PDMS blends exhibit negligible dilational viscoelasticity after the collapse of PDMS. Furthermore, the phase behavior of PDMS blended with a trisilanol-POSS derivative containing different substituents, trisilanolcyclopentyl-POSS (TCpP), is also investigated via the Wilhelmy plate technique and BAM. These TCpP/PDMS blends exhibit dramatically different phase behavior and morphological features from previously studied POSS/PDMS blends, showing that the organic substituents on trisilanol-POSS have considerable impact on the phase behavior of POSS/PDMS blends. The interfacial rheological behavior of tricarboxylic acid terminated PDMS (PDMS-Stabilizer) and PDMS stabilized MNPs are investigated and compared with "regular" PDMS containing non-polar end groups. The tricarboxylic acid end group of the PDMS-Stabilizer leads to a different collapse mechanism. The PDMS stabilized MNPs exhibit viscoelastic behavior that is similar to PDMS showing all the tricarboxylic acid end groups are bound to the magnetite cores. Studying the interfacial behavior of different Langmuir films at the A/W interface provides us insight into the impact of molecule-molecule and molecule-subphase interactions on film morphology and rheology. These results are able to serve as important guides for designing surface films with preferred morphological and mechanical properties. / Ph. D.
5

An Acoustic-based Microfluidic Platform for Active Separation and Mixing

Jo, Myeong Chan 01 January 2013 (has links)
Particle separation is of great interest to many biological and biomedical applications. Flow-based methods have been used to sort particles and cells. However, the main challenge with flow based particle separation systems is the need for a sheath flow for successful operation. Existence of the sheath liquid dilutes the analyte, necessitates precise flow control between sample and sheath flow, requires a complicated design to create sheath flow and separation efficiency depends on the sheath liquid composition. In addition, current gold standard active separation techniques are only capable of separation based on particle size; hence, separation cannot be achieved for same-size particles with different densities. In this dissertation, a sheathless acoustic-based microfluidic platform using surface acoustic wave for not only size-dependent but also density-dependent particle separation has been investigated. In this platform, two different functions were incorporated within a single microfluidic channel with varying the number of pressure node and position. The first function was to align particles on the center of the microfluidic channel without adding any external sheath flow. The second function was to separate particles according to their size or density. Two different size-pairs of polystyrene particles with different diameters (3 µm and 10 µm for general size-resolution, 3 µm and 5 µm for higher size-resolution) were successfully separated. Also, the separation of two 10 µm diameter, different-density particle streams (polystyrene: 1.05 g/cm3, melamine: 1.71 g/cm3) was successfully demonstrated. The effects of the input power, the flow rate, and particle concentration on the separation efficiency were investigated. A range of high separation efficiencies with 94.8-100 % for size-based separation and 87.2 - 98.9 % for density-based separation were accomplished. In this dissertation, an acoustic-based microfluidic platform using dual acoustic streaming for active mixing has also been investigated. The rapid and high efficiency mixing of a fluorescent dye solution and deionized water in a microfluidic channel was demonstrated with single acoustic excitation by one interdigital transducer (IDT) as well as dual excitation by two IDTs. The mixing efficiencies were investigated as a function of applied voltage and flow rates. The results indicate that with the same operation parameters, the mixing efficiency with dual-IDT design increased to 96.7 % from 69.8 % achievable with the traditional single-IDT design. The effect of aperture length of the IDT on mixing efficiency was also investigated. Additionally, the effects of the polydimethylsiloxane (PDMS) channel wall thickness on the insertion loss and the particle migration to the pressure node due to acoustic radiation forces induced by SAW have been investigated. The results indicate that as the PDMS channel wall thickness decreased, the SAW insertion loss is reduced as well as the velocity of the particle migration due to acoustic forces increased significantly. As an example, reducing the side wall thickness of the PDMS channel from 8 mm to 2 mm in the design results in 31.2 % decrease in the insertion loss at the resonant frequency of 13.3 MHz and 186 % increase the particle migration velocity at the resonant frequency of 13.3 MHz with input power of 27 dBm. Lastly, a novel acoustic-based method of manipulating the particles using phase-shift has been proposed and demonstrated. The location of the pressure node was adjusted simply by modulating the relative phase difference (phase-shift) between two IDTs. As a result, polystyrene particles of 5 µm diameter trapped in the pressure node were manipulated laterally across the microfluidic channel. The lateral displacements of the particles from -72.5 µm to 73.1 µm along the x-direction were accomplished by varying the phase-shift with a range of -180° to 180°. The relationship between the particle displacement and the phase-shift of SAW was obtained experimentally and shown to agree with theoretical prediction of the particle position.
6

High-density stretchable microelectrode arrays: an integrated technology platform for neural and muscular surface interfacing

Guo, Liang 04 April 2011 (has links)
Numerous applications in neuroscience research and neural prosthetics, such as retinal prostheses, spinal-cord surface stimulation for prosthetics, electrocorticogram (ECoG) recording for epilepsy detection, etc., involve electrical interaction with soft excitable tissues using a surface stimulation and/or recording approach. These applications require an interface that is able to set up electrical communications with a high throughput between electronics and the excitable tissue and that can dynamically conform to the shape of the soft tissue. Being a compliant and biocompatible material with mechanical impedance close to that of soft tissues, polydimethylsiloxane (PDMS) offers excellent potential as the substrate material for such neural interfaces. However, fabrication of electrical functionalities on PDMS has long been very challenging. This thesis work has successfully overcome many challenges associated with PDMS-based microfabrication and achieved an integrated technology platform for PDMS-based stretchable microelectrode arrays (sMEAs). This platform features a set of technological advances: (1) we have fabricated uniform current density profile microelectrodes as small as 10 microns in diameter; (2) we have patterned high-resolution (feature as small as 10 microns), high-density (pitch as small as 20 microns) thin-film gold interconnects on PDMS substrate; (3) we have developed a multilayer wiring interconnect technology within the PDMS substrate to further boost the achievable integration density of such sMEA; and (4) we have invented a bonding technology---via-bonding---to facilitate high-resolution, high-density integration of the sMEA with integrated circuits (ICs) to form a compact implant. Taken together, this platform provides a high-resolution, high-density integrated system solution for neural and muscular surface interfacing. sMEAs of example designs are evaluated through in vitro and in vivo experimentations on their biocompatibility, surface conformability, and surface recording/stimulation capabilities, with a focus on epimysial (i.e. on the surface of muscle) applications. Finally, as an example medical application, we investigate a prosthesis for unilateral vocal cord paralysis (UVCP) based on simultaneous multichannel epimysial recording and stimulation.
7

Novel Analytical Techniques For the Assessment of Degradation of Silicone Elastomers in High Voltage Applications

Sovar, Robert D. January 2005 (has links)
Over the last 20 years "composite" insulators have been increasingly used in high voltage applications as an alternative traditional materials. More recently, polydimethylsiloxane (PDMS) have been used as weather sheds on these composite insulators. The main attraction with PDMS is that the surface hydrophobicity can be recovered following pollution or surface discharges. Among the possible mechanisms for recovery the most likely is the migration of low molecular weight silicone oil (LMWS) from the bulk to the surface encapsulating pollutant particles. Although it is widely recognised that the migration of LMWS is the cause of this recovery of hydrophobicity, the mechanism of what actually occurs is not well understood. It is also not known for how long this process will continue. The main objective of this study program was to gain improved understanding of the surface hydrophobic recovery process that is unique to polydimethlysiloxane high-voltage insulators. Fundamental knowledge of this mechanism has been increased through the development of the Contact Angle DRIFT Electrostatic Deposition (CADED) novel analytical technique. This technique enabled study of the degradation of silicone elastomers subjected to high voltage environments by closely following LMWS migration from the bulk material to the surface and linking it to the contact angle measurements. The migration rate data showed that the aged material recovered faster that the virgin material. Differences in the rate and maximum surface levels of silicone were seen between materials from different manufacturers. This has significant implications for the life-time of these materials A model system has been developed to examine LMWS diffusion through the bulk material and into the interface of surface and pollutant. This was achieved by examining theoretical and empirically derived equations and using existing experimental data to better understand the mechanism of recovery. This diffusion was Fickian in the initial stages of recovery. X-ray photoelectron spectroscopy (XPS) and contact angle measurements were used to substantiate the degree of degradation in in-field silicone insulators by quantifying the levels of the major degradation products: silica and silica-like material and alumina.
8

Polymérisation du décaméthylcyclopentasiloxane à l’aide de superbases : vers une nouvelle voie de synthèse des copolymères à blocs / Polymerization of decamethylcyclopentasiloxane initiated by superbases : a new way to reach block copolymers

Pibre, Guillaume 15 October 2009 (has links)
Dans l’optique de développement de matériaux performants avec une approche respectueuse de l’environnement, l’obtention de copolymères à blocs de type hard-soft avec une forte proportion de polydiméthylsiloxane (PDMS) en utilisant le procédé d’extrusion est une étape vers des élastomères thermoplastiques d’intérêt. Afin de s’affranchir de la faible réactivité des extrémités de chaînes des longues macromolécules, la voie originale mise en avant consiste en la réalisation de copolymères ayant une partie centrale PDMS courte puis en l’allongement de celle-ci selon les propriétés visées. L’étape critique d’allongement est effectuée à l’aide de bases phosphazènes comme agents de polymérisation de décaméthylcyclopentasiloxane (D5). Dans un premier temps, une approche chemio-rhéologique de la polymérisation du D5 à l’aide de ces superbases a été réalisée. L’acquisition des données intrinsèques de cette réaction permet de mettre au point la modélisation de l’évolution de viscosité du système en cours de réaction, vérifiant ainsi sa compatibilité avec l’utilisation de l’extrusion réactive. Dans un second temps, l’utilisation d’une architecture modèle de PDMS fonctionnalisé en bout de chaîne par des groupements chimiques volumineux de type naphtyl valide l’hypothèse d’allongement du chaînon central par insertion de D5 selon cette catalyse. Finalement, cette approche a été appliquée à des architectures macromoléculaires de type poly(styrène-b-diméthylsiloxane-b-styrène). Dans ce cas, les résultats sont, à cette heure, moins probants. Ceci est potentiellement dû à l’aspect procédé de nos manipulations. Cette dernière observation révèle l’intérêt de l’extrusion dans ce type de synthèse. / Nowadays the development of performing new materials using an environmental friendly route is a challenge. To produce hard-soft block copolymers based on a high polydimethylsiloxane (PDMS) content using reactive extrusion process is a milestone to reach thermoplastic elastomers. Because of the low reactivity of high molecular weight macromolecule chain ends an original route is described. It consists in the synthesis of copolymers containing low central PDMS and then increasing the molecular weight of this central part. This crucial step is performed using phosphazene bases as polymerization agents of decamethylcyclopentasiloxane (D5). Firstly, the polymerization of D5 by phosphazene bases has been investigated by chemiorheological means. To define intrinsic data of this reaction allows modelling the viscosity change during the chemical reaction. Thus, it is observed this polymerization system is compatible with reactive extrusion. Secondly, we investigate the hypothesis of increasing the molecular weight of a short central PDMS part in a triblock copolymer by D5 insertion using the catalysis system previously described. Naphtyl end-chain functionalized PDMS was used as a model. So we confirmed this route as an interesting one to achieve the targeted macromolecular architectures. Finally, we tried to produce poly(styrene-b-dimethylsiloxane-b-styrene) through this way. In this case, early investigations are not so convincing. This may come from the experimental device used. This last observation stresses out the great potential of extrusion process to implement such a route to reach thermoplastic elastomers based on high polysiloxane content.
9

Point-of-Care High-throughput Optofluidic Microscope for Quantitative Imaging Cytometry

Jagannadh, Veerendra Kalyan January 2017 (has links) (PDF)
Biological research and Clinical Diagnostics heavily rely on Optical Microscopy for analyzing properties of cells. The experimental protocol for con-ducting a microscopy based diagnostic test consists of several manual steps, like sample extraction, slide preparation and inspection. Recent advances in optical microscopy have predominantly focused on resolution enhancement. Whereas, the aspect of automating the manual steps and enhancing imaging throughput were relatively less explored. Cost-e ective automation of clinical microscopy would potentially enable the creation of diagnostic devices with a wide range of medical and biological applications. Further, automation plays an important role in enabling diagnostic testing in resource-limited settings. This thesis presents a novel optofluidics based approach for automation of clinical diagnostic microscopy. A system-level integrated optofluidic architecture, which enables the automation of overall diagnostic work- ow has been proposed. Based on the proposed architecture, three different prototypes, which can enable point-of-care (POC) imaging cytometry have been developed. The characterization of these prototypes has been performed. Following which, the applicability of the platform for usage in diagnostic testing has been validated. The prototypes were used to demonstrate applications like Cell Viability Assay, Red Blood Cell Counting, Diagnosis of Malaria and Spherocytosis. An important performance metric of the device is the throughput (number of cells imaged per second). A novel microfluidic channel design, capable of enabling imaging throughputs of about 2000 cells per second has been incorporated into the instrument. Further, material properties of the sample handling component (microfluidic device) determine several functional aspects of the instrument. Ultrafast-laser inscription (ULI) based glass microfluidic devices have been identi ed and tested as viable alternatives to Polydimethylsiloxane (PDMS) based microfluidic chips. Cellular imaging with POC platforms has thus far been limited to acquisition of 2D morphology. To potentially enable 3D cellular imaging with POC platforms, a novel slanted channel microfluidic chip design has been proposed. The proposed design has been experimentally validated by performing 3D imaging of fluorescent microspheres and cells. It is envisaged that the proposed innovation would aid to the current e orts towards implementing good quality health-care in rural scenarios. The thesis is organized in the following manner : The overall thesis can be divided into two parts. The first part (chapters 2, 3) of the thesis deals with the optical aspects of the proposed Optofluidic instrument (development, characterization and validations demonstrating its use in poc diagnostic applications). The second part (chapters 4,5,6) of the thesis details the microfluidic sample handling aspects implemented with the help of custom fabricated microfludic devices, the integration of the prototype, func-tional framework of the device. Chapter 2 introduces the proposed optofluidic architecture for implementing the POC tool. Further, it details the first implementation of the proposed platform, based on the philosophy of adapting ubiquitously available electronic imaging devices to perform cellular diagnostic testing. The characterization of the developed prototypes is also detailed. Chapter 3 details the development of a stand-alone prototype based on the proposed architecture using inexpensive o -the-shelf, low frame-rate image sensors. The characterization of the developed prototype and its performance evaluation for application in malaria diagnostic testing are also presented. The chapter concludes with a comparative evaluation of the developed prototypes, so far. Chapter 4 presents a novel microfludic channel design, which enables the enhancement of imaging throughput, even while employing an inexpensive low frame-rate imaging modules. The design takes advantage of radial arrangement of microfludic channels for enhancing the achievable imaging throughput. The fabrication of the device and characterization of achievable throughputs is presented. The stand-alone optofluidic imaging system was then integrated into a single functional unit, with the proposed microfluidic channel design, a viscoelastic effect based micro uidic mixer and a suction-based microfluidic pumping mechanism. Chapter 5 brings into picture the aspect of the material used to fabricate the sample handling unit, the robustness of which determines certain functional aspects of the device. An investigative study on the applicability of glass microfluidic devices, fabricated using ultra-fast laser inscription in the context of the microfluidics based imaging flow cytometry is presented. As detailed in the introduction, imaging in poc platforms, has thus far been limited to acquisition of 2D images. The design and implementation of a novel slanted channel microfluidic chip, which can potentially enable 3D imaging with simplistic optical imaging systems (such as the one reported in the earlier chapters of this thesis) is detailed. A example application of the proposed microfludic chip architecture for imaging 3D fluorescence imaging of cells in flow is presented. Chapter 6 introduces a diagnostic assessment framework for the use of the developed of m in an actual clinical diagnostic scenario. The chapter presents the use of computational signatures (extracted from cell images) to be employed for cell recognition, as part of the proposed framework. The experimental results obtained while employing the framework to identify cells from three different leukemia cell lines have been presented in this chapter. Chapter 7 summarizes the contributions reported in this thesis. Potential future scope of the work is also detailed.

Page generated in 0.0675 seconds