• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 8
  • 1
  • 1
  • Tagged with
  • 29
  • 29
  • 9
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Applications of acoustic streaming

Hertz, Thomas G. January 1993 (has links)
Thesis--Lund Institute of Technology, 1993.
2

Applications of acoustic streaming

Hertz, Thomas G. January 1993 (has links)
Thesis--Lund Institute of Technology, 1993.
3

Dynamics of eastern boundary currents and their effects on sound speed structure

Guthrie, Vanessa M. 06 1900 (has links)
Identifying the influence of eastern boundary current (EBC) dynamical processes on sound speed structure can provide better ocean models for acoustic predictions in littoral regions. This study will explore the effects of currents, wind and eddies on the sound speed structure of two different EBC models, the North Canary Current System (NCCS) and the Leeuwin Current System (LCS). These systems represent classical features of EBCs as well as regional anomalies. This study seeks to introduce sound speed analysis to the sigma coordinate primitive equation models and determine which regions of EBCs experience the largest changes in sound speed and most intense gradients. Results of model runs show that the dynamics of EBCs lead to large changes in sound speed and distort the vertical sound speed profile. The greatest change in sound speed in either region is caused by upwelling in the NCCS. Surface and associated subsurface eddies in the LCS are the largest scale feature in the study. The undercurrent of the NCCS and Meddies present the most intense (horizontal and vertical) gradients of sound speed change. / US Navy (USN) author.
4

A new ultrasound intensity meter : characterization and optimization

Manning, Gavin N. January 1987 (has links)
The principle of operation of a novel rotating disk ultrasonic intensity meter is studied. Its characteristics are explained by a competition between acoustic radiation pressure and viscous drag on the disk. Acoustic streaming does not play a significant role in the operation of this meter as it is now configured. Experiments are described which were done to find the optimum dimensions and position for a nylon disk. In this optimum configuration, the rotation rate of the disk is related to the ultrasonic intensity by a power law. This relationship is theoretically predicted and found to hold as the ultrasonic intensity varies by a factor of at least ten. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
5

Interdigital Capacitive Micromachined Ultrasonic Transducers for Microfluidic Applications

McLean, Jeffrey John 20 August 2004 (has links)
The goal of this research was to develop acoustic sensors and actuators for microfluidic applications. To this end, capacitive micromachined ultrasonic transducers (cMUTs) were developed which generate guided acoustic waves in fluid half-spaces and microchannels. An interdigital transducer structure and a phased excitation scheme were used to selectively excite guided acoustic modes which propagate in a single lateral direction. Analytical models were developed to predict the geometric dispersion of the acoustic modes and to determine the sensitivity of the modes to changes in material and geometric parameters. Coupled field finite element models were also developed to predict the effect of membrane spacing and phasing on mode generation and directionality. After designing the transducers, a surface micromachining process was developed which has a low processing temperature of 250C and has the potential for monolithically integrating cMUTs with CMOS electronics. The fabrication process makes extensive use of PECVD silicon nitride depositions for membrane formation and sealing. The fabricated interdigital cMUTs were placed in microfluidic channels and demonstrated to sense changes in fluid sound speed and flow rate using Scholte waves and other guided acoustic modes. The minimum detectable change in sound speed was 0.25m/s, and the minimum detectable change in flow rate was 1mL/min. The unique nature of the Scholte wave allowed for the measurement of fluid properties of a semi-infinite fluid using two transducers on a single substrate. Changes in water temperature, and thus sound speed, were measured and the minimum detectable change in temperature was found to be 0.1C. For fluid pumping, interdigital cMUTs were integrated into microchannels and excited with phase-shifted, continuous wave signals. Highly directional guided waves were generated which in turn generated acoustic streaming forces in the fluid. The acoustic streaming forces caused the fluid to be pumped in a single, electronically-controlled direction. For a power consumption of 43mW, a flow rate of 410nL/min was generated against a pressure of 3.4Pa; the thermodynamic efficiency was approximately 5x10-8%. Although the efficiency and pressure head are low, these transducers can be useful for precisely manipulating small amounts of fluid around microfluidic networks.
6

Interaction entre ultrasons de puissance et fluides complexes / Interaction between power ultrasound and complex fluids

Dochy, Thibaut 10 December 2018 (has links)
On étudie l'évolution d'une solution initialement homogène constituée de deux espèces soumises à un gradient thermique qui génère un transfert de matière, ce qui peut conduire à la séparation des espèces du fluide binaire. La configuration choisie pour étudier la séparation est une cellule rectangulaire (ou parallélépipédique), horizontale et placée dans le champ de pesanteur. La présence d'une source piézo-électrique, sur l'une des parois verticales de la cavité, permet de générer un écoulement stationnaire à grande échelle. L'écoulement est induit par la propagation d'ondes ultrasonores au sein du fluide visqueux : la dissipation de l'énergie acoustique de l'onde au sein du fluide porte le nom d'Eckart streaming. On cherche à optimiser la séparation en combinant gradient thermique et source acoustique. La première partie consiste en l'étude de l'écoulement isotherme généré par l'onde ultrasonore dans un fluide mono-constituant. Après avoir calculé le champ d'intensité acoustique avec l'intégrale de Rayleigh, le profil est implémenté dans un code aux éléments finis Comsol Multiphysics. Les résultats numériques sont comparés avec des résultats expérimentaux antérieurs. Dans une seconde partie, on considère une cavité contenant un fluide binaire. On détermine analytiquement, à l'aide du logiciel Maple, la séparation (différence de fraction massique entre les deux extrémités de la cellule) en fonction des paramètres de contrôle du problème. Des simulations numériques 2D et 3D ont montré un bon accord entre les résultats analytiques et numériques, pour un paramètre acoustique constant et un chauffage par le bas ou par le haut de la cellule. Le problème considéré dépend alors de huit paramètres adimensionnels. Trois d'entre eux sont propres à la nature du fluide binaire : le nombre de Lewis Le, de Prandtl Pr et le facteur de séparation ψ. Il y a ensuite deux paramètres de contrôle, le nombre de Rayleigh thermique Ra et la force acoustique adimensionnelle A. Enfin, les autres paramètres adimensionnels sont les deux rapports d'aspect de la cavité, ainsi que l'épaisseur relative du faisceau acoustique / The evolution of an initially homogeneous solution consisting of two species subjected to a thermal gradient which generates a mass transfer, which can lead to the separation species from the binary fluid, is studied. The configuration chosen to study the separation is a rectangular (or parallelepipedic) cell, horizontal and placed in the gravitational field. The presence of a piezoelectric source on one of the vertical walls of the cavity makes it possible to generate a stationary flow on a large scale. The flow is induced by the propagation of ultra-sonic waves within the viscous fluid : the dissipation of the acoustic energy of the wave within the fluid is called Eckart streaming. We seek to optimize the separation by combining thermal gradient and acoustic source. The first part consists of the study of the isothermal flow generated by the ultrasonic wave in a monoconstituent fluid. After calculating the acoustic intensity field with the Rayleigh integral, the profile is implemented in a Comsol Multiphysics finite element code. The numerical results are compared with previous experimental results. In a second part, we consider a cavity containing a binary fluid. A configuration heated from the top is privilegied to allow the insertion of an acoustic source. The separation (difference of mass fraction between the two ends of the cell) is determined analytically using the Maple software as a function of the control parameters of the problem. 2D and 3D numerical simulations showed a good agreement between the analytical and numerical results, for a constant acoustic parameter. The problem considered depends on eight dimensionless parameters. Three of them are specific to the nature of the binary fluid : the Lewis number Le, the Prandtl number Pr and the separation factor ψ. There are then two control parameters, the thermal Rayleigh number Ra and the adimensional acoustic force A. Finally, the other dimensionless parameters are the two aspect ratios of the cavity, as well as the relative thickness of the beam.
7

Designs and Applications of Surface Acoustic Wave Sensors for Biological and Chemical Sensing and Sample Handling

Cular, Stefan 15 February 2008 (has links)
Acoustic wave sensors have proven useful in many fields as primarily mass sensitive devices capable of responding to small environmental perturbations. The focus of this dissertation is the development of a new type of surface acoustic wave device with application to material property measurement, and biological and chemical sensing. This device is a combination of three independent acoustic wave devices with these waves propagated across the same area, while retaining independence of actuation and sensor function. The development of a complete sensor system, and its use and operation are presented for several example cases of chemical and biomarker sensing, and sample manipulation. These include experimental and theoretical studies for organic vapor sensing, biological moiety sensing, acoustic streaming to remove loosely bound material, and optimization of designs for these applications.
8

Numerical investigations of the performance and effectiveness of thermoacoustic couples.

Zoontjens, Luke January 2008 (has links)
Thermoacoustics is a field of study which includes devices purpose-built to exploit the phenomenal interaction between heat and sound. Thermoacoustics has been demonstrated as an effective technology which can potentially serve a variety of purposes such as cryogenics, cost-effective domestic refrigeration or electricity generation, without adverse environmental impact or commercial drawbacks such as expensive construction or maintenance costs or high part counts. The mechanisms by which thermoacoustic devices operate at low amplitudes have been identified and effective design tools and methods are available, but the precise heat and mass transfer which occurs deep inside the core of thermoacoustic devices at high amplitudes cannot at present be precisely determined experimentally, and to date have been estimated using only relatively simple or one-dimensional computational domains. It is expected that thermoacoustic devices will need to operate at relatively high pressure amplitudes for commercial and practical applications, to achieve power densities similar to competing technologies. Clearly, advancement of these models and the methods used to investigate them will enable a better understanding of the precise heat and mass transfer that occurs within such devices. Previous numerical studies have modelled a ‘thermoacoustic couple’ which consists of a single or several plates (often modelled with zero thickness) and channels within an oscillatory pressure field. In this thesis several improvements to the ‘thermoacoustic couple’ modelspace are introduced and modelled, and compared with published results. Using the commercial CFD software Fluent, a two-dimensional, segregated and second-order implicit numerical model was developed which solves equations for continuity of mass, momentum and energy. These equations were computed using second-order and double-precision discretisation of time, flow variables and energy. A computational domain is presented which is capable of modelling plates of zero or non-zero thickness, is ‘self-resonant’ and able to capture the entrance and exit effects at the stack plate edges. Studies are presented in which the acoustic pressure amplitude, the thickness of the plate (‘blockage ratio’) and the shape of the plate are varied to determine their influence upon the rate of effective heat transfer, flow structure and overall efficiency. The modelling of thermoacoustic couples with finite thickness presented in this thesis demonstrates that the finite thickness produces new results which show significant disturbances to the flow field and changes to the expected rate and distribution of heat flux along the stack plate. Results indicate that the thickness of the plate, t[subscript]s, strongly controls the generation of vortices outside the stack region and perturbs the flow structure and heat flux distribution at the extremities of the plate. Increases in t[subscript]s are also shown to improve the integral of the total heat transfer rate but at the expense of increased entropy generation. Another contribution of this thesis is the study of the effect that leading and trailing edge shapes of stack plates have on the performance of a thermoacoustic couple. In practice, typical parallel or rectangular section stack plates do not have perfectly square edges. The existing literature considers only rectangular or zero-thickness (1-D) plates. Hence a study was performed to evaluate the potential for gains in performance from the use of non-rectangular cross sections, such as rounded, aerofoil or bulbous shaped edges. Consideration of various types of stack plate edges show that performance improvements can be made from certain treatments to the stack plate tips or if possible, stack plate profiles. This thesis also considers the influence of thermophysical properties and phenomena associated with practical thermoacoustic devices to investigate the applicability of the numerical model to experimental outcomes. Comparisons made between results obtained using the numerical model, linear numerical formulations and experimental results suggest that the numerical model allows comparative study of various thermoacoustic systems for design purposes but is not yet of sufficient scope to fully characterise a realistic system and predict absolute levels of performance. However, the presented method of modelling thermoacoustic couples yields increased insight and detail of flow regimes and heat transportation over previous studies. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1316904 / Thesis (Ph.D.) -- University of Adelaide, School of Mechanical Engineering, 2008
9

Development of Three Dimensional Fluid-Structure Interaction Models for the Design of Surface Acoustic Wave Devices: Application to Biosensing and Microfluidic Actuation

Singh, Reetu 01 October 2009 (has links)
Surface acoustic wave (SAW) devices find uses in a plethora of applications including but not limited to chemical, biological sensing, and microfluidic actuation. The primary aim of this dissertation is to develop a SAW biosensor, capable of simultaneous detection of target biomarkers in fluid media at concentrations of picogram/ml to nanogram/ml levels and removal of non-specific proteins from sensor surface using the process of acoustic streaming, for potential chemical sensing, medical, and clinical diagnostic applications. The focus is on the development of three dimensional finite element structural and fluid-structure interaction models to study wave propagation and acoustic actuation of fluids in a SAW biosensor. This work represents a significant improvement in understanding fluid flow over SAW devices, over the currently available continuum model of Nyborg. The developed methodology includes use of a novel substrate, namely, Langasite coupled with various combinations of novel multidirectional interdigital transducer (IDT) configurations such as orthogonal, focused IDTs as well as sensor surface modifications, such as micro-cavities. The current approach exploits the capability of the anisotropic piezoelectric crystal to launch waves of different characteristics in different directions, which can be put to the multiple uses including but not limited to sensing via shear horizontal waves and biofouling elimination via Rayleigh wave induced acoustic streaming. Orthogonal IDTs gives rise to constructive interference, thereby enhancing the magnitudes of device displacements and fluid velocities. The net effect is an increase in device sensitivity and acoustic streaming intensity. The use of micro-cavities in the delay path provides a synergistic effect, thereby further enhancing the device sensitivity and streaming intensity. Focused IDTs are found to enhance the device displacements and fluid velocities, while focusing the device displacements and fluid motion at the device focal point, thereby enhancing the SAW device biosensing performance. The work presented in this dissertation has widespread and immediate use for enhancing sensor sensitivity and analyte discrimination capabilities as well as biofouling removal in medical diagnostic applications of SAW sensors. This work also has a broad relevance to the sensing of multiple biomarkers in medical applications as well as other technologies utilizing these devices such as microfluidic actuation.
10

Design of surface acoustic wave sensors with nanomaterial sensing layers: Application to chemical and biosensing

Sankaranarayanan, Subramanian K.R.S 01 June 2007 (has links)
Surface acoustic wave (SAW) sensors detect chemical and biological species by monitoring the shifts in frequency of surface acoustic waves generated on piezoelectric substrates. Incorporation of nanomaterials having increased surface area as sensing layer have been effective in improving the sensitivity as well as miniaturization of SAW sensors. Selectivity, sensitivity and speed of response are the three primary aspects for any type of sensor. This dissertation focuses on design and development of SAW devices with novel transducer configurations employing nanomaterial sensing layers for enhanced sensing, improved selectivity, and speed of response. The sensing mechanism in these SAW sensors is a complex phenomenon involving interactions across several different length and time scales. Surface acoustic wave propagation at the macro-scale is influenced by several kinetic phenomena occurring at the molecular scale such as adsorption, diffusion, reaction, and desorption which in turn depend on the properties of nanomaterials. This suggests the requirement of a multi-scale model to effectively understand and manipulate the interactions occurring at different length scales, thereby improving sensor design. Sensor response modeling at multiple time and length scales forms part of this research, which includes perturbation theories, and simulation techniques from finite element methods to molecular-level simulations for interpreting the response of these surface acoustic wave chemical and biosensors utilizing alloy nanostructures as sensing layers. Molecular modeling of sensing layers such as transition metal alloy nanoclusters and nanowires is carried out to gain insights into their thermodynamic, structural, mechanical and dynamic properties. Finite element technique is used to understand the acoustic wave propagation at the macroscale for sensing devices operating at MHz frequencies and with novel transducer designs. The findings of this research provide insights into the design of efficient surface acoustic wave sensors. It is expected that this work will lead to a better understanding of surface acoustic wave devices with novel transducer configurations and employing nanomaterial sensing layers.

Page generated in 0.0761 seconds