• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Strukturelle Korrelate des Gesangslernens bei Vögeln

Nixdorf-Bergweiler, Barbara Emilie 28 June 2006 (has links)
Das Gesangssystem der Vögel hat sich als ein hervorragendes Modellsystem erwiesen, um Fragen zu Mechanismen entwicklungsbedingter neuronaler Plastizität von Lernprozessen zu erarbeiten. Bei Singvögeln haben sich im Laufe der Phylogenese neuronale Zentren entwickelt, die sich auf das Gesangslernen und die Gesangsproduktion spezialisiert haben. Zebrafinkenmännchen, wie viele andere Singvögel auch, erlernen ihren Gesang, indem sie von einem Tutor ihr artspezifisches Gesangsmuster schon in früher Jugend im Gedächtnis abspeichern und dann ganz allmählich ihr eigenes Vokalisationsmuster über auditorische Rückkopplung an das im Gehirn abgespeicherte Muster angleichen. Parallel zu diesen Verhaltensänderungen, finden auch auf neuronaler Ebene zahlreiche Veränderungen in den Gesangskernen statt, die in der hier vorliegenden Arbeit detailliert untersucht wurden, indem Zebrafinken zum einen mit einem Gesangstutor aufwuchsen oder ohne ein Gesangsvorbild. Die Folgen dieser unterschiedlichen Aufzuchtsbedingungen wurden dann im Gesang und in den neuronalen Strukturen der Gesangskerne mit einer Vielzahl von Techniken analysiert, einschließlich der Golgi-Technik, Elektronenmikroskopie, Immunhistochemie, verschiedener neuronaler Tracersubstanzen und quantitativer Stereologie, sowie intrazellulärer Ableitungen am in vitro Hirnschnittpräparat. Die Daten zeigen u.a., dass dendritische Spines an der Gedächtnisbildung für Gesang maßgeblich beteiligt sind und zwar in einer Vorderhirnregion, der eine wichtige Rolle bei frühen sensorischen Lernprozessen zukommt, dem lateralen magnocellularen Nucleus des anterioren Nidopalliums (LMAN). Zebrafinkenweibchen singen nicht und haben weitaus kleinere Gesangskerne als die Männchen. Zebrafinkenweibchen, die nie einen artspezifischen Gesang hören, weisen im Vergleich zu denen, die mit einem solchen aufgewachsen sind, signifikante Unterschiede in der neuronalen Struktur im Nucleus robustus arcopallii (RA) auf. Diese Befunde zeigen, dass die Gesangskerne bei Weibchen trotz ihrer kleineren Größe dennoch eine wichtige Rolle bei der Gedächtnisbildung eines artspezifischen Gesangsmusters spielen. Man beachte, dass die Nomenklatur des Vogelgehirns 2004 revidiert wurde (Reiner et al, J Comp Neurol 473:377-414, 2004; http://avianbrain.org/papers/RevisedNomenclature.pdf). / The song system of birds has been used extensively as a model system for studying basic mechanisms of neuronal plasticity and development underlying a learned behavior. Discrete sets of interconnected nuclei in the avian brain have evolved and are a prerequisite for song learning processes and the production of song. Zebra finch males, like many other song birds, learn their song by memorizing a tutor song model early in life and then gradually matching their vocal output by auditory feedback to the stored memory of that tutor song. In parallel to these behavioural changes, various changes in neuronal structures of song system nuclei take place. These structural correlates of song learning processes have been investigated in great detail in the current research by raising zebra finches with and without a song tutor model and then studying the consequences for song and for neuronal structure in the song system by using a variety of techniques including Golgi-technique, electron microscopy, immunohistochemistry, various neuronal tracer and quantitative stereology, intracellular recordings in the in vitro slice preparation and analyzing sonograms at the behavioral approach. There is strong evidence that, among other findings, dendritic spines are very much involved in memory formation of song in the lateral magnocellular nucleus of the anterior nidopallium (LMAN), a forebrain region particularly involved in sensory learning processes early in life. Female zebra finches do not sing and have much smaller song nuclei than males. Rearing females either with being exposed to species-specific song early in life or deprived of hearing song, exhibit significant differences in neuronal structure particularly in nucleus robustus arcopallii (RA). These data give further evidence that, despite their smaller sizes, song system nuclei in female birds do play an important role in memorization of song. Please note that in 2004 the nomenclature of the avian brain has been revised (Reiner et al, J Comp Neurol 473:377-414, 2004; http://avianbrain.org/papers/RevisedNomenclature.pdf).
2

Point-of-Care High-throughput Optofluidic Microscope for Quantitative Imaging Cytometry

Jagannadh, Veerendra Kalyan January 2017 (has links) (PDF)
Biological research and Clinical Diagnostics heavily rely on Optical Microscopy for analyzing properties of cells. The experimental protocol for con-ducting a microscopy based diagnostic test consists of several manual steps, like sample extraction, slide preparation and inspection. Recent advances in optical microscopy have predominantly focused on resolution enhancement. Whereas, the aspect of automating the manual steps and enhancing imaging throughput were relatively less explored. Cost-e ective automation of clinical microscopy would potentially enable the creation of diagnostic devices with a wide range of medical and biological applications. Further, automation plays an important role in enabling diagnostic testing in resource-limited settings. This thesis presents a novel optofluidics based approach for automation of clinical diagnostic microscopy. A system-level integrated optofluidic architecture, which enables the automation of overall diagnostic work- ow has been proposed. Based on the proposed architecture, three different prototypes, which can enable point-of-care (POC) imaging cytometry have been developed. The characterization of these prototypes has been performed. Following which, the applicability of the platform for usage in diagnostic testing has been validated. The prototypes were used to demonstrate applications like Cell Viability Assay, Red Blood Cell Counting, Diagnosis of Malaria and Spherocytosis. An important performance metric of the device is the throughput (number of cells imaged per second). A novel microfluidic channel design, capable of enabling imaging throughputs of about 2000 cells per second has been incorporated into the instrument. Further, material properties of the sample handling component (microfluidic device) determine several functional aspects of the instrument. Ultrafast-laser inscription (ULI) based glass microfluidic devices have been identi ed and tested as viable alternatives to Polydimethylsiloxane (PDMS) based microfluidic chips. Cellular imaging with POC platforms has thus far been limited to acquisition of 2D morphology. To potentially enable 3D cellular imaging with POC platforms, a novel slanted channel microfluidic chip design has been proposed. The proposed design has been experimentally validated by performing 3D imaging of fluorescent microspheres and cells. It is envisaged that the proposed innovation would aid to the current e orts towards implementing good quality health-care in rural scenarios. The thesis is organized in the following manner : The overall thesis can be divided into two parts. The first part (chapters 2, 3) of the thesis deals with the optical aspects of the proposed Optofluidic instrument (development, characterization and validations demonstrating its use in poc diagnostic applications). The second part (chapters 4,5,6) of the thesis details the microfluidic sample handling aspects implemented with the help of custom fabricated microfludic devices, the integration of the prototype, func-tional framework of the device. Chapter 2 introduces the proposed optofluidic architecture for implementing the POC tool. Further, it details the first implementation of the proposed platform, based on the philosophy of adapting ubiquitously available electronic imaging devices to perform cellular diagnostic testing. The characterization of the developed prototypes is also detailed. Chapter 3 details the development of a stand-alone prototype based on the proposed architecture using inexpensive o -the-shelf, low frame-rate image sensors. The characterization of the developed prototype and its performance evaluation for application in malaria diagnostic testing are also presented. The chapter concludes with a comparative evaluation of the developed prototypes, so far. Chapter 4 presents a novel microfludic channel design, which enables the enhancement of imaging throughput, even while employing an inexpensive low frame-rate imaging modules. The design takes advantage of radial arrangement of microfludic channels for enhancing the achievable imaging throughput. The fabrication of the device and characterization of achievable throughputs is presented. The stand-alone optofluidic imaging system was then integrated into a single functional unit, with the proposed microfluidic channel design, a viscoelastic effect based micro uidic mixer and a suction-based microfluidic pumping mechanism. Chapter 5 brings into picture the aspect of the material used to fabricate the sample handling unit, the robustness of which determines certain functional aspects of the device. An investigative study on the applicability of glass microfluidic devices, fabricated using ultra-fast laser inscription in the context of the microfluidics based imaging flow cytometry is presented. As detailed in the introduction, imaging in poc platforms, has thus far been limited to acquisition of 2D images. The design and implementation of a novel slanted channel microfluidic chip, which can potentially enable 3D imaging with simplistic optical imaging systems (such as the one reported in the earlier chapters of this thesis) is detailed. A example application of the proposed microfludic chip architecture for imaging 3D fluorescence imaging of cells in flow is presented. Chapter 6 introduces a diagnostic assessment framework for the use of the developed of m in an actual clinical diagnostic scenario. The chapter presents the use of computational signatures (extracted from cell images) to be employed for cell recognition, as part of the proposed framework. The experimental results obtained while employing the framework to identify cells from three different leukemia cell lines have been presented in this chapter. Chapter 7 summarizes the contributions reported in this thesis. Potential future scope of the work is also detailed.

Page generated in 0.0682 seconds