• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Patho-Genetic Characterization of the Muscular Dystrophy Gene Myotilin

Garvey, Sean Michael 02 May 2007 (has links)
Myotilin is a muscle-specific Z-disc protein with putative roles in myofibril assembly and structural upkeep of the sarcomere. Several myotilin point mutations have been described in patients with Limb-Girdle Muscular Dystrophy Type 1A (LGMD1A), myofibrillar myopathy (MFM), spheroid body myopathy (SBM), and distal myopathy, four similar adult-onset, progressive, and autosomal dominant muscular dystrophies--collectively called the myotilinopathies. It is not yet known how myotilin mutations cause muscle disease. To investigate myotilin's role in the pathogenesis of muscle disease, I have created and characterized transgenic mice expressing mutant (Thr57Ile) myotilin under the control of the human skeletal alpha-actin promoter. Like LGMD1A and MFM patients, these mice develop progressive myofibrillar pathology that includes Z-disc streaming, excess myofibrillar vacuolization, and plaque-like myofibrillar aggregation. These aggregates become progressively larger and more numerous with age. I show that the mutant myotilin protein properly localizes to the Z-disc, and also heavily populates the aggregates, along with several other Z-disc associated proteins. Whole muscle physiological analysis reveals that the extensor digitorum longus (EDL) muscle of transgenic mice exhibits significantly reduced maximum specific isometric force compared to littermate controls. Intriguingly, the soleus and diaphragm muscles are spared of any abnormal myopathology and show no reductions in maximum specific force. These data provide evidence that myotilin mutations promote aggregate-dependent contractile dysfunction. To better understand myotilin function, I also created two separate lines of myotilin domain deletion transgenic mice: one expresses a deletion of the N-terminal domain and the second expresses a deletion of the minimal alpha-actinin binding site. Studies in these mice show that 1) the N-terminal domain of myotilin may be required for normal localization to the Z-disc; 2) interaction with alpha-actinin is not required for localization of myotilin to the Z-disc; and 3) deletion of the alpha-actinin binding site causes an aggregation phenotype similar to that of the TgT57I mouse and myotilinopathy patients. In sum, I have established a promising patho-physiological mouse model that unifies the diverse clinical phenotypes of the myotilinopathies. This mouse model promises to be a key resource for understanding myotilin function, unraveling LGMD1A pathogenesis, and investigating therapeutics. / Dissertation
2

Cellular and Molecular Mechanisms Underlying Congenital Myopathy-related Weakness

Lindqvist, Johan January 2014 (has links)
Congenital myopathies are a rare and heterogeneous group of diseases. They are primarily characterised by skeletal muscle weakness and disease-specific pathological features. They harshly limit ordinary life and in severe cases, these myopathies are associated with early death of the affected individuals. The congenital myopathies investigated in this thesis are nemaline myopathy and myofibrillar myopathy. These diseases are usually caused by missense mutations in genes encoding myofibrillar proteins, but the exact mechanisms by which the point mutations in these proteins cause the overall weakness remain mysterious. Hence, in this thesis two different nemaline myopathy-causing actin mutations and one myofibrillar myopathy-causing myosin-mutation found in both human patients and mouse models were used to investigate the cascades of molecular and cellular events leading to weakness. I performed a broad range of functional and structural experiments including skinned muscle fibre mechanics, small-angle X-ray scattering as well as immunoblotting and histochemical techniques. Interestingly, according to my results, point mutations in myosin and actin differently modify myosin binding to actin, cross-bridge formation and muscle fibre force production revealing divergent mechanisms, that is, gain versus loss of function (papers I, II and IV). In addition, one point mutation in actin appears to have muscle-specific effects.  The presence of that mutant protein in respiratory muscles, i.e. diaphragm, has indeed more damaging consequences on myofibrillar structure than in limb muscles complexifying the pathophysiological mechanisms (paper II). As numerous atrophic muscle fibres can be seen in congenital myopathies, I also considered this phenomenon as a contributing factor to weakness and characterised the underlying causes in presence of one actin mutation. My results highlighted a direct muscle-specific up-regulation of the ubiquitin-proteasome system (paper III). All together, my research work demonstrates that mutation- and muscle-specific mechanisms trigger the muscle weakness in congenital myopathies. This gives important insights into the pathophysiology of congenital myopathies and will undoubtedly help in designing future therapies.

Page generated in 0.3101 seconds