• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 14
  • 6
  • 6
  • 2
  • 2
  • 1
  • Tagged with
  • 60
  • 58
  • 18
  • 16
  • 16
  • 14
  • 12
  • 11
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Aerobic exercise-induced functional and cellular adaptations in patients with myotonic dystrophy type 1

Mikhail, Andrew January 2020 (has links)
Myotonic dystrophy type 1 (DM1) is the most common adult muscular dystrophy affecting ~1/8000 people worldwide. DM1 is characterized by accelerated skeletal muscle weakness and wasting, myotonia and insulin resistance, ultimately causing impaired function and diminished quality of life. A trinucleotide (CTG) repeat expansion in the 3’ region upstream of the DMPK gene results in dysregulation of several RNA binding proteins (RNABPs) important for muscle health such as MBNL and CUGBP1. Exercise was shown to ameliorate DM1 pathology in mice and to be safe for DM1 patients. This thesis aimed to investigate the muscular adaptations of 12-weeks of aerobic exercise in DM1 patients. Eleven DM1 patients (DM1, 42.6 ± 3 y) were recruited from the Neuromuscular and Neurometabolic clinic at McMaster University and age matched to healthy controls (CON, 42.5 ± 2 y). DM1 and CON performed incremental VO2peak testing, muscle and spirometry functional tests and a skeletal muscle biopsy from the Vastus lateralis. After 12-weeks of training on a cycle ergometer (3x/wk @ ~65 %VO2peak), DM1 patients completed post-testing. Exercise training significantly increased total lean mass (TLM) by ~ 1.6 kg (p<0.05) and fibre cross-sectional area by ~30 % in DM1 patients. Aerobic fitness was enhanced following training from 19.7 ± 1.5 mL/kg/min to 26.0 ± 2.1 mL/kg/min (p<0.05). Furthermore, training improved 6-min walk test, timed up & go, and 5X sit-to-stand scores (p<0.05). Mechanistically, exercise modestly altered expression of RNABPs, and augmented mitochondrial function and protein content. This is the first study to comprehensively investigate the effects of aerobic training on muscle health and function in DM1. Our data provides evidence that exercise training can augment fitness, functional capacity and muscle mass in DM1. Further understanding the influence of exercise on DM1 pathology could outline the efficacy of a simple life intervention and provide insight for future pharmacological discoveries for DM1. / Thesis / Master of Science (MSc)
12

Genotype-phenotype correlations and characterization of medication use in inherited myotonic disorders

Meyer, Alayne 28 August 2019 (has links)
No description available.
13

Targeting Myotonic Dystrophy with Small Molecules

Coonrod, Leslie, Coonrod, Leslie January 2012 (has links)
Myotonic dystrophy (DM) is one of the most common forms of muscular dystrophy, characterized by its hallmark symptom myotonia. DM is an autosomal dominant disease caused by a toxic gain of function RNA. The toxic RNA is produced from expanded non-coding CTG/CCTG repeats, and these CUG/CCUG repeats sequester a family of RNA binding proteins. The Muscleblind-like (MBNL) family of RNA binding proteins are sequestered to the expanded CUG/CCUG repeats. The MBNL proteins are regulators of alternative splicing, and their sequestration to the toxic RNA leads to mis-splicing events, which are believed to cause the symptoms observed in DM patients. A previously reported screen for small molecules used to identify compounds that could disrupt MBNL from binding the toxic CUG repeats found that pentamidine was able to rescue splicing defects associated with DM. Herein, we present a new class of molecules (phenolsulphonphthaleins) that inhibited MBNL1/CUG repeat complex formation in a competitive electrophoretic mobility shift assay (EMSA). Additionally, one of these molecules, bromophenol blue (BPB), acted in a synergistic manner with the previously described inhibitor pentamidine. We also demonstrated that the halogenation of the phenolsulphonphthalein dyes is an important factor for activity. Moreover, we presentant analysis of a series of methylene linker variants of pentamidine that revealed heptamidine (an analog of pentamidine) could reverse splicing defects in a DM1 tissue culture model and rescue myotonia in a DM1 mouse model. Finally, we report on a new crystal structure of CUG repeats, crystallized in the context of a GAAA tetraloop/receptor which facilitated ordered packing within the crystal. This structure was consistent with previous structures showing that the repeats are essentially A-form RNA, despite having a U-U mismatch every third base pair. We also identified six types of U-U mismatch in the context of the 5'CUG/3'GUC motif, suggesting that the interactions between the uridines are dynamic. This structure also contains the highest resolution GAAA tetraloop/receptor structure (1.95 Å) reported to date. This dissertation includes previously unpublished co-authored material.
14

Cis-elements Affecting Disease-associated Repeat Sequences

Hagerman, Katharine Anne 03 March 2010 (has links)
The expansion of repetitive sequences leads to more than 40 neurological, neurodegenerative and neuromuscular diseases. These diseases are frequently characterized by ongoing DNA repeat instability upon transmission, worsening of disease severity and decreasing age of onset with each successive generation. The mechanism of repeat instability and contribution of repeat instability to disease pathogenesis are unknown. My thesis examines the contribution of cis-elements – sequences around and within repeats as well as surrounding epigenetic environments – to repeat instability, and discusses their possible contribution to repeat diseases. Here I identify the first cis-element regulating repeat instability, a DNA binding site for a trans factor protein, CTCF. Loss of CTCF binding at the spinocerebellar ataxia type 7 disease locus induces somatic and germline instability in an age- and tissue-specific manner in mice. CTCF protects against instability in an epigenetic manner, and may function at other disease loci also possessing CTCF binding sites near the repeat. Given that CTCF flanks many repeat loci and is often situated between a replication origin and disease-associated repeat, I assess the role of CTCF on replication and instability at the myotonic dystrophy repeat locus. Templates with CTCF binding sites reduce overall replication efficiency in primate cells that may be partly due to replication fork stalling. Mutating CTCF binding sites can alter the stability of the repeat depending on the distance from the origin of replication to the repeat. Finally I examine chromatinization of (ATTCT)n repeats from the spinocerebellar ataxia type 10 locus. These repeats induce very strong nucleosome formation, and at physiological conditions form even more strongly on (ATTCT)n repeats with interruptions that are also found in some patients. These data contribute to the understanding of repeat instability in the causation of many diseases, and suggest that the presence of cis-elements at repeat-associated disease loci alter the behaviour of repeats.
15

Evaluation of Skeletal Muscle with Thallium-201 Scintigraphy in Myotonic Muscular Dystrophy: A Case Report

YAMAMOTO, SHUHEI 03 1900 (has links)
No description available.
16

Cis-elements Affecting Disease-associated Repeat Sequences

Hagerman, Katharine Anne 03 March 2010 (has links)
The expansion of repetitive sequences leads to more than 40 neurological, neurodegenerative and neuromuscular diseases. These diseases are frequently characterized by ongoing DNA repeat instability upon transmission, worsening of disease severity and decreasing age of onset with each successive generation. The mechanism of repeat instability and contribution of repeat instability to disease pathogenesis are unknown. My thesis examines the contribution of cis-elements – sequences around and within repeats as well as surrounding epigenetic environments – to repeat instability, and discusses their possible contribution to repeat diseases. Here I identify the first cis-element regulating repeat instability, a DNA binding site for a trans factor protein, CTCF. Loss of CTCF binding at the spinocerebellar ataxia type 7 disease locus induces somatic and germline instability in an age- and tissue-specific manner in mice. CTCF protects against instability in an epigenetic manner, and may function at other disease loci also possessing CTCF binding sites near the repeat. Given that CTCF flanks many repeat loci and is often situated between a replication origin and disease-associated repeat, I assess the role of CTCF on replication and instability at the myotonic dystrophy repeat locus. Templates with CTCF binding sites reduce overall replication efficiency in primate cells that may be partly due to replication fork stalling. Mutating CTCF binding sites can alter the stability of the repeat depending on the distance from the origin of replication to the repeat. Finally I examine chromatinization of (ATTCT)n repeats from the spinocerebellar ataxia type 10 locus. These repeats induce very strong nucleosome formation, and at physiological conditions form even more strongly on (ATTCT)n repeats with interruptions that are also found in some patients. These data contribute to the understanding of repeat instability in the causation of many diseases, and suggest that the presence of cis-elements at repeat-associated disease loci alter the behaviour of repeats.
17

On oral health in children and adults with myotonic dystrophy

Engvall, Monica, January 2010 (has links)
Diss. (sammanfattning) Göteborg : Göteborgs universitet, 2010.
18

DNA binding specificity and transcriptional regulation of Six4 : a myotonic dystrophy associated transcription factor

Kiosses, Theodore January 2009 (has links)
Attaining an understanding of the mechanisms underpinning development has been amongst the cardinal scientific challenges of our age. The transition from a single cell organism to the level of complexity evidenced in higher eukaryotes has been facilitated by the advent of intricate developmental networks involving a plethora of factors that synergise to allow for precise spatio-temporal expression of the proteins present in higher organisms. Development is often portrayed as a domino like cascade of events stemming from relatively uncomplicated origins that go on to branch out and form associations and interactions amongst multitudinous actors that will inexorably lead towards a higher state of order. Transcription factors occupy a central position within this tapestry of interactions. They regulate expression of the various required proteins and they provide the cues for the developmental events that will eventually shape an organism. These factors frequently remain unknown until some occurrence causes developmental processes to fail and inadvertently focus attention on the factors that facilitate development. Myotonic dystrophy is a useful paradigm of such a developmental dysfunction that has led to the discovery of a transcription factor integral to both muscle development and gonadogenesis in both Drosophila and higher eukaryotes.
19

RNAi Screening of the Kinome Identifies PACT as a Novel Genetic Modifier of Foci Integrity in Myotonic Dystrophy type 1

O'Reilly, Sean W.P. 07 February 2014 (has links)
Myotonic Dystrophy type 1 (DM1), the most common form of adult muscular dystrophy (~1:8000) currently has no effective treatment. In DM1, expansion of a tri-nucleotide repeat in the 3' UTR of the DMPK gene results in DMPK mRNA hairpin structures, aggregating as insoluble ribonuclear foci. The resulting mis-regulation of important splicing factors, causes the inclusion of fetal exons in dozens of transcripts that contribute to the disease phenotype. In order to identify novel gene targets and kinase signalling pathways for potential therapeutics we have performed a high-throughput RNAi. RNA foci were visualized and quantified by in-situ hybridization. From our screen, we have identified a novel gene, PACT, as a modulator of foci integrity and that PACT knockdown can induce MBNL1 protein levels. The identified signalling complex represents a valid target for DM1 therapeutics. Our data further emphasizes the utility of RNAi screens in identifying disease-associated genes.
20

The DMAHP/SIX5 gene in myotonic dystrophy /

Klesert, Todd Robert. January 1999 (has links)
Thesis (Ph. D.)--University of Washington, 1999. / Vita. Includes bibliographical references (leaves 107-120).

Page generated in 0.045 seconds