• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 8
  • 1
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 13
  • 12
  • 10
  • 8
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Fatty Acids and Risk of Fracture in Postmenopausal Women

Orchard, Tonya Sue 25 July 2011 (has links)
No description available.
22

Ostéogénie, intégration et qualité de la nacre d’un bivalve des côtes tunisiennes : Pinctada radiata (Leach, 1814) / Osteogenie, integration and quality of nacre of a tunisian coast bivalve Pinctada Radiata (Leach, 1814)

Ben Ammar, Rym 15 December 2014 (has links)
La couche de nacre de la coquille de l'huître perlière Pinctada radiata des côtes tunisiennes est considérée comme un biomatériau ostéogénique prometteur. L’objectif de ce travail intitulé « Ostéogénie, intégration et qualité de la nacre d’un bivalve des côtes tunisiennes : Pinctada radiata (Leach, 1814) » consiste dans un premier temps à valoriser l’espèce P. radiata par sa qualité nutritionnelle par un suivi saisonnier de la composition de sa chair en lipides totaux et en phospholipides particulièrement les PC, PE, PS et PI. Les analyses effectuées ont montré que les lipides de P.radiata sont caractérisés par une richesse en acides gras polyinsaturés (AGPI) de la série n-3 qui dépasse 3 fois celle des AGPI de la série n-6. Ces AGPI de la série n-3 en particulier l’EPA (C20:5n-3) et le DHA (C22:6n-3), sont connus comme étant les AG les plus importants dans l’alimentation humaine puisqu’ils préviennent des maladies cardiovasculaires et des pathologies ostéo-articulaires. Par ailleurs, P. radiata de la région de Maharès présente la meilleure qualité de nacre en Tunisie. Les analyses biochimiques ont montré que cette région, constitue la meilleure localisation de cette espèce qui est loin des zones portuaires et des différentes origines de stress (pêche, exploitation, zone touristique etc…). En plus de cet aspect, la zone de Maharès renferme des pintadines présentant une bonne qualité en termes d’épaisseur de nacre. Nos résultats montrent que la composition, saisonnière, en acide gras des phospholipides et en particulier des glycérophospholipides (PE, PI, PS et PC) de la nacre est riche en acides gras saturés C14 :0, C16 :0 et C18 :0 particulièrement en hiver et dans un moindre degré au printemps. La nacre, substance ostéogénique, a été également caractérisée par un taux élevé de plusieurs AGPI de la série n-3 et n-6, particulièrement (18:3n-3, 18:4n-3, 20:5n-3, 22:5n-3, 22:6n-3 et le 20:4n-6). Pour démontrer les potentialités ostéogéniques des extraits de la nacre, nous avons utilisé un modèle "in vitro" utilisant 4 extraits lipidiques : l’extrait lipidique de la nacre de P.radiata (Ln), l’extrait lipidique de la chair de P.radiata (Lc), l’ESM (Ethanol soluble Matrix) de la nacre de P.radiata (Br) et l’ESM de la nacre de P.margaritifera (Bm). Nous avons comparé, in vitro, le pouvoir ostéogénique des extraits ESM des deux espèces P. radiata et P. margaritifera sur deux types de cellules les préchondrocytes ATDC5 et les préostéoblastes murins MC3T3. Les différents extraits (Ln, Lc, Br et Bm) induisent l’engagement des cellules MC3T3 vers le lignage ostéoblastique par l’activation des promoteurs des gènes spécifiques du tissu osseux, tels que: le collagène de type 1, l’ostéocalcine (OC), l’ostéopontine(OP) et le Runx2. Ces extraits induisent aussi l’engagement des cellules ATDC5 vers la différenciation endochondrale par l’activation des promoteurs des gènes spécifiques du tissu osseux, tels que: le collagène de type 1 alpha-1 (Col1a1), l’Aggrécane et le collagène de type X alpha-1 (ColXA1). De plus, nous remarquons que la fraction organique ou ESMr(Br) en comparaison avec celle de P.margaritifera (Bm) présente également les propriétés stimulantes de la nacre et la stimulation est même beaucoup plus importante. Ces résultats mettent en évidence, dans les modèles expérimentaux mis en oeuvre, l’intérêt des lipides. Ces derniers semblent jouer un rôle important dans cette stimulation. De plus, nous pouvons penser à la possibilité de l’association des molécules de nacre ou de biominéralisation avec les acides gras de la nacre et de la chair dans les défauts osseux à travers les sites actifs de l’os ou du cartilage humain présentant les différentes pathologies ostéarticulaires / The nacre layer of the shell of the pearl oyster Pinctada radiata of tunisian coast is considered a promising osteogenic biomaterial. The objective of this work entitled "Osteogenie, integration and quality of nacre of a tunisian coast bivalve: Pinctada radiata (Leach, 1814)" is a first step to enhance the species P.radiata its nutritional quality by seasonal monitoring of the composition of the flesh of total lipids and phospholipids in particular PC, PE, PS and PI. The analyzes showed that lipids of P.radiata are characterized by rich in polyunsaturated fatty acids (PUFAs) of the n-3 more than 3 times that of PUFAs n-6 series. These PUFAs of the n-3 series particularly EPA (C20: 5n-3) and DHA (C22: 6n-3) are known to be the most important AG in the food as prevent of the cardiovascular disease, and joint/ bone pathologies. Moreover, P. radiata of Mahares region has the best quality of nacre in Tunisia. Biochemical analyzes showed that this region is the best location of this species that is far from the port areas and different sources of stress (fishing, exploitation, tourist area etc ...). In addition to this aspect, the area contains pintadines having good quality in terms of thickness of nacre. Our results show that the seasonal composition of fatty acid of phospholipids in particular glycerophospholipids (PE, PI, PS and PC) nacre is rich in saturated fatty acids C14: 0, C16: 0 and C18: 0 especially in winter and spring in a lesser degree. Nacre, osteogenic substance, was also characterized by a high rate of PUFA of the n-3 and n-6 rate, especially (18: 3n-3, 18: 4n-3, 20: 5n-3, 22 5n-3, 22: 6n-3 and 20: 4n-6). To demonstrate the osteogenic potential of extracts of nacre, we have established an "in vitro" model using 4 lipid extracts: the lipid extract of nacre P.radiata (Ln); the lipid extract of the flesh of P.radiata (Lc), ESM (Ethanol soluble Matrix) of the mother-of P.radiata (Br) and ESM nacre of P. margaritifera (Bm). We compared “in vitro” osteogenic power ESM extracts of both species P. radiata and P. margaritifera on two types of cells the préchondrocytes ATDC5 and the murine preosteoblasts MC3T3. The different extracts (Ln, Lc, Br and Bm) induce engagement MC3T3 osteoblast lineage cells to the activation of the promoters of specific genes of bone tissue, such as collagen type 1, osteocalcin (OC), osteopontin (OP) and Runx2. These extracts also induce the commitment of ATDC5 cells to endochondral differentiation by activating specific genes promoters of bone tissue, such as collagen type 1 alpha 1 (COL1A1), the aggrecan and collagen type alpha 1-X (ColXA1). Moreover, we note that the organic fraction or ESMR (Br) compared with that of P. margaritifera (Bm) also has stimulant properties of nacre and the stimulation is even more important. These results demonstrate, in experimental models used, the interest of lipids. They seem to play an important role in this stimulation. Moreover, we can think about the possibility of the association of molecules or nacre biomineralization with the fatty acids of the nacre and flesh in bone defects through the active sites of bone or cartilage presenting the human osteoarticular different pathologies
23

Effects of iron and omega-3 supplementation on the immune system of iron deficient children in South Africa : a randomised controlled trial / Linda Malan

Malan, Linda January 2014 (has links)
Background Iron deficiency (ID) is the world‟s most prevalent micronutrient deficiency and predominantly affects developing countries, also South Africa. In areas with low fish consumption and high n-6 PUFA vegetable oil intake, there is a risk for having inadequate n-3 PUFA status. Both iron and n-3 PUFA play important roles in the immune response, and supplementation is a strategy to alleviate deficiencies. However, little is known about potential interactive effects between concurrent iron and n-3 PUFA supplementation on the immune system. This is also important in the context that iron supplementation may be unsafe and may increase morbidity and mortality. Aim The overall aim of this thesis was to assess the effects of iron and docosahexaenoic (DHA)/eicosapentaenoic acid (EPA) supplementation, alone and in combination, on the immune system of ID children. More specifically, these effects were investigated on the occurrence and duration of illness and school-absenteeism due to illness, peripheral blood mononuclear cell (PBMC), red blood cell (RBC) and plasma total phospholipid fatty acid composition, iron status, fatty acid-derived immune modulators and targeted PBMC gene expression. Furthermore, association of PBMC, RBC and plasma total phospholipid fatty acid composition with allergic disease, were also examined. Design In a 2-by-2 factorial, randomised, double-blind, placebo-controlled trial, South African children (n = 321, aged 6–11 y) were randomly assigned to receive oral supplements of either 1) iron (50 mg as ferrous sulphate) plus placebo; 2) DHA/EPA (420/80 mg) plus placebo; 3) iron plus DHA/EPA (420/80 mg); or 4) placebo plus placebo for 8.5 mo, four times per week. Absenteeism and illness symptoms were recorded and biochemical parameters for compliance as well as parameters fundamental to immune function were assessed at baseline and endpoint. Furthermore, in a cross-sectional design, associations of allergic disease with baseline fatty acid composition of PBMC, RBC and plasma were examined. Results The combination of iron and DHA/EPA significantly attenuated respiratory illness caused by iron supplementation. DHA/EPA supplementation alone improved respiratory symptoms at school, but increased headache-related absenteeism. DHA/EPA and iron supplementation individually tended to increase and decrease anti-inflammatory DHA and EPA-derived mediators, respectively. Furthermore the anti-inflammatory DHA-derived immune mediator, 17HDHA was higher in the DHA/EPA plus placebo and iron plus DHA/EPA groups than in the iron plus placebo group. Also, the pro-inflammatory arachidonic acid (AA)-derived modulators (5- and 15-hydroxyeicosapentaenoic acid) were significantly lower in the iron plus DHA/EPA group compared to the placebo plus placebo groups. In the study population, 27.2% of the children had allergic disease and AA in PBMC phospholipids was significantly lower in the allergic children than in the non-allergic children. In RBC phospholipids dihomo-gamma-linolenic acid (DGLA) and the ratio of DGLA: linoleic acid (LA) correlated negatively and the n-6:n-3 PUFA ratio positively with total immunoglobulin E (tIgE). Furthermore, trans-C18:1n-9, tended to be higher in the allergic group. Conclusion DHA/EPA prevented respiratory illness caused by iron supplementation and although DHA/EPA on its own reduced respiratory morbidity when the children were present at school, surprisingly it increased the likelihood of being absent with headache and fever. The biochemical findings compliment the clinical results and support previous observations about DHA/EPA supplementation to reduce inflammation, but add to the current knowledge base that a relatively high oral dose of non-haem iron modulates circulating lipid-derived immune modulators and related gene expression. Furthermore, when supplementing with iron and DHA/EPA combined, in this ID population with low fish intake, the anti-inflammatory effect of DHA/EPA is maintained concurrently with attenuation of respiratory morbidity. This finding support the notion that excess iron (probably as non-transferrin bound iron) becomes available for pathogens and is probably why we found that iron increased respiratory infectious morbidity. The improved clinical outcome with combined supplementation seems to be related to increased lipid-mediator synthesis gene expression and the availability of DHA/EPA, leading to a more pro-resolving profile and enhanced immune competence. Overall these results give better insight into immune function and infectious morbidity in relation to n-3 PUFA and iron status and treatment, as well as the possible association of fatty acid status with allergic disease in young South-African school children. / PhD (Nutrition), North-West University, Potchefstroom Campus, 2015
24

Effects of iron and omega-3 supplementation on the immune system of iron deficient children in South Africa : a randomised controlled trial / Linda Malan

Malan, Linda January 2014 (has links)
Background Iron deficiency (ID) is the world‟s most prevalent micronutrient deficiency and predominantly affects developing countries, also South Africa. In areas with low fish consumption and high n-6 PUFA vegetable oil intake, there is a risk for having inadequate n-3 PUFA status. Both iron and n-3 PUFA play important roles in the immune response, and supplementation is a strategy to alleviate deficiencies. However, little is known about potential interactive effects between concurrent iron and n-3 PUFA supplementation on the immune system. This is also important in the context that iron supplementation may be unsafe and may increase morbidity and mortality. Aim The overall aim of this thesis was to assess the effects of iron and docosahexaenoic (DHA)/eicosapentaenoic acid (EPA) supplementation, alone and in combination, on the immune system of ID children. More specifically, these effects were investigated on the occurrence and duration of illness and school-absenteeism due to illness, peripheral blood mononuclear cell (PBMC), red blood cell (RBC) and plasma total phospholipid fatty acid composition, iron status, fatty acid-derived immune modulators and targeted PBMC gene expression. Furthermore, association of PBMC, RBC and plasma total phospholipid fatty acid composition with allergic disease, were also examined. Design In a 2-by-2 factorial, randomised, double-blind, placebo-controlled trial, South African children (n = 321, aged 6–11 y) were randomly assigned to receive oral supplements of either 1) iron (50 mg as ferrous sulphate) plus placebo; 2) DHA/EPA (420/80 mg) plus placebo; 3) iron plus DHA/EPA (420/80 mg); or 4) placebo plus placebo for 8.5 mo, four times per week. Absenteeism and illness symptoms were recorded and biochemical parameters for compliance as well as parameters fundamental to immune function were assessed at baseline and endpoint. Furthermore, in a cross-sectional design, associations of allergic disease with baseline fatty acid composition of PBMC, RBC and plasma were examined. Results The combination of iron and DHA/EPA significantly attenuated respiratory illness caused by iron supplementation. DHA/EPA supplementation alone improved respiratory symptoms at school, but increased headache-related absenteeism. DHA/EPA and iron supplementation individually tended to increase and decrease anti-inflammatory DHA and EPA-derived mediators, respectively. Furthermore the anti-inflammatory DHA-derived immune mediator, 17HDHA was higher in the DHA/EPA plus placebo and iron plus DHA/EPA groups than in the iron plus placebo group. Also, the pro-inflammatory arachidonic acid (AA)-derived modulators (5- and 15-hydroxyeicosapentaenoic acid) were significantly lower in the iron plus DHA/EPA group compared to the placebo plus placebo groups. In the study population, 27.2% of the children had allergic disease and AA in PBMC phospholipids was significantly lower in the allergic children than in the non-allergic children. In RBC phospholipids dihomo-gamma-linolenic acid (DGLA) and the ratio of DGLA: linoleic acid (LA) correlated negatively and the n-6:n-3 PUFA ratio positively with total immunoglobulin E (tIgE). Furthermore, trans-C18:1n-9, tended to be higher in the allergic group. Conclusion DHA/EPA prevented respiratory illness caused by iron supplementation and although DHA/EPA on its own reduced respiratory morbidity when the children were present at school, surprisingly it increased the likelihood of being absent with headache and fever. The biochemical findings compliment the clinical results and support previous observations about DHA/EPA supplementation to reduce inflammation, but add to the current knowledge base that a relatively high oral dose of non-haem iron modulates circulating lipid-derived immune modulators and related gene expression. Furthermore, when supplementing with iron and DHA/EPA combined, in this ID population with low fish intake, the anti-inflammatory effect of DHA/EPA is maintained concurrently with attenuation of respiratory morbidity. This finding support the notion that excess iron (probably as non-transferrin bound iron) becomes available for pathogens and is probably why we found that iron increased respiratory infectious morbidity. The improved clinical outcome with combined supplementation seems to be related to increased lipid-mediator synthesis gene expression and the availability of DHA/EPA, leading to a more pro-resolving profile and enhanced immune competence. Overall these results give better insight into immune function and infectious morbidity in relation to n-3 PUFA and iron status and treatment, as well as the possible association of fatty acid status with allergic disease in young South-African school children. / PhD (Nutrition), North-West University, Potchefstroom Campus, 2015

Page generated in 0.0349 seconds