Spelling suggestions: "subject:"nanodevices"" "subject:"nanodevice""
1 |
Consolidated nanomaterials synthesized using nickel micro-wires and carbon nanotubesDavids, Wafeeq January 2007 (has links)
Magister Scientiae - MSc / Nano-devices are the next step in the application of nanomaterials in modern technology. One area of research that is receiving an increased amount of attention globally is the fabrication of new nano-devices for applications in hydrogen energy technologies. The current work focuses on the synthesis and characterization of nano-devices with potential application in alkaline electrolysis and secondary polymer lithium ion batteries. Previous work with Nickel micro-wires demonstrated the potential to use these nanomaterials as electrodes in alkaline electrolysis. Carbon nanotubes have been shown to posse excellent electrochemical properties. A new direction in research is explored by combining nickel micro-wires with CNT, a new consolidated composite carbon nanocomposite can be realized and the characterization of such a novel composite was the focus of this thesis. Novel composite carbon nanomaterials were synthesized using an electrochemical template technique and a hydrocarbon pyrolysis step. The first step involved the deposition of nickel within the pores of ion track etched Polyethylene terephthalate (PET)
membrane; with pore diameters of 1μ, 0.4μ and 0.2 μ. Electrochemical deposition of nickel was carried out galvanostatically in a nickel hard bath between 35-40°C, and using a deposition current density of 75 mAcm2. Carbon nanotubes were then deposited directly onto the surface of the nickel micro-wires via a chemical vapour deposition (CVD) technique using liquid petroleum gas (LPG) as the carbon source. CVD was done at a temperature of 800°C and the deposition time was 5 minutes. The morphology and structural studies of these novel composite nanomaterials were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Electrochemical investigations were done using
Cyclic Voltammetry (CV), Chronoamperometry (CA) and Electrochemical Impedance Spectroscopy (EIS). After removal of the template, before CNT CVD growth, SEM images revealed free standing arrays of nickel micro-wires, and after CNT growth via CVD the SEM micrographs showed that the morphology of the Ni micro-wires was moderately altered by the CVD process. From the XRD results it was shown that the crystallinity of the Nimicro-wires was persevered after the CVD process. The XRD of the nickel micro-wires
with CNT grown directly on the surface revealed the characteristic CNT peak at 2θ =24.60. Cyclic Voltammetry (CV) was performed on the consolidated composite nanomaterial in an alkaline solution. The CV revealed that the novel composite carbon nanomaterial was the most active for hydrogen evolution when compared to unmodified Ni micro-wires and a flat nickel electrode. This was attributed to the increase in electrochemical accessible surface area.
Electrochemical impedance spectroscopy (EIS) showed that the novel composite carbon nanomaterial had a much higher capacitance than the nickel micro-wires, a flat nickel electrode, a flat nickel substrate modified with CNT, and a graphite electrode. When a similar comparison was done using a commercially available anode for lithium ion battery applications, the novel consolidated composite carbon nanomaterial had double the capacitance of the commercial anode. The consolidated composite carbon nanomaterial was modified by depositing Pt on to the surface of the CNT via electroless deposition. The presence of Pt was determined by Energy dispersive spectrometry and the electrocatalytic activity of the Pt modified
consolidated composite carbon nanomaterial was significantly improved.
The work presented in this thesis provides a new and unique direction in the synthesis and application of novel consolidated carbon nanomaterials through true synergistic effect between nickel micro-wires and CNT. The exploration of the characteristics of the system and the ability to functionalize the CNT with different moieties allows for a wide range of application in energy conversion devices. / South Africa
|
2 |
Consolidated Nanomaterials Synthesized using Nickel micro-wires and Carbon Nanotubes.Davids, Wafeeq. January 2007 (has links)
<p>The current work focuses on the synthesis and characterization of nano-devices with potential application in alkaline electrolysis and secondary polymer lithium ion batteries.</p>
|
3 |
Consolidated Nanomaterials Synthesized using Nickel micro-wires and Carbon Nanotubes.Davids, Wafeeq. January 2007 (has links)
<p>The current work focuses on the synthesis and characterization of nano-devices with potential application in alkaline electrolysis and secondary polymer lithium ion batteries.</p>
|
4 |
Micro-nano biosystems: silicon nanowire sensor and micromechanical wireless power receiverMateen, Farrukh 22 October 2018 (has links)
Silicon Nanowire-based biosensors owe their sensitivity to the large surface area to volume ratio of the nanowires. However, presently they have only been shown to detect specific bio-markers in low-salt buffer environments. The first part of this thesis presents a pertinent next step in the evolution of these sensors by presenting the specific detection of a target analyte (NT-ProBNP) in a physiologically relevant solution such as serum. By fabrication of the nanowires down to widths of 60 nm, choosing appropriate design parameters, optimization of the silicon surface functionalization recipe and using a reduced gate oxide thickness of 5 nm; these sensors are shown to detect the NT-ProBNP bio-marker down to 2ng/ml in serum. The observed high background noise in the measured response of the sensor is discussed and removed experimentally by the addition of an extra microfabrication step to employ a differential measurement scheme. It is also shown how the modulation of the local charge density via external static electric fields (applied by on-chip patterned electrodes) pushes the sensitivity threshold by more than an order of magnitude. These demonstrations bring the silicon nanowire-based biosensor platform one step closer to being realized for point-of-care (POC) applications. In the second half of the thesis, it is demonstrated how silicon micromechanical piezoelectric resonators could be tasked to provide wireless power to such POC bio-systems. At present most sensing and actuation platforms, especially in the implantable format, are powered either via onboard battery packs which are large and need periodic replacement or are powered wirelessly through magnetic induction, which requires a proximately located external charging coil. Using energy harnessed from electric fields at distances over a meter; comprehensive distance, orientation, and power dependence for these first-generation devices is presented. The distance response is non-monotonic and anomalous due to multi-path interferences, reflections and low directivity of the power receiver. This issue is studied and evaluated using COMSOL Multiphysics simulations. It is shown that the efficiency of these devices initially evaluated at 3% may be enhanced up to 15% by accessing higher frequency modes.
|
5 |
Theoretical Modeling of Quantum Dot Infrared PhotodetectorsNaser, Mohamed Abdelaziz Kotb 10 1900 (has links)
Quantum dot infrared photodetectors (QDIPs) have emerged as a promising technology in the mid- and far-infrared (3-25 μm) for medical and environmental sensing that have a lot of advantages over current technologies based on Mercury Cadmium Telluride (MCT) and quantum well (QW) infrared photodetectors (QWIPs). In addition to the uniform and stable surface growth of III/V semiconductors suitable for large area focal plane applications and thermal imaging, the three dimension confinement in QDs allow sensitivity to normal
incidence, high responsivity, low darkcurrent and high operating temperature. The growth, processing and characterizations of these detectors are costly and take a lot of time. So, developing theoretical models based on the physical operating principals will be so useful in characterizing and optimizing the device performance. Theoretical models based on non-equilibrium Green's functions have been developed to electrically and optically characterize different structures of QDIPs. The advantage of the model over the previous developed classical and semiclassical models is that it fairly describes quantum transport phenomenon playing a significant role in the performance of such nano-devices and considers the microscopic device structure including the shape and size of QDs, heterostructure
device structure and doping density. The model calculates the density of states from which all possible energy transitions can be obtained and hence obtains the operating wavelengths for intersubband transitions. The responsivity due to intersubband transitions is calculated and the effect of having different sizes and different height-to-diameter ratio QDs can be obtained for optimization. The dark and photocurrent are calculated from the quantum transport equation provided by the model and their characteristics at different design parameter are studied. All the model results show good agreement with the available experimental results. The detectivity has been calculated from the dark and photocurrent characteristics at different design parameters. The results shows a trade off between the responsivity and detectivity and what determines the best performance is how much the rate of increase of the photocurrent and dark current is affected by changing the design parameters. Theoretical modeling developed in the thesis give good description to the QDIP different characteristics that will help in getting good estimation to their physical performance and hence allow for successful device design with optimized performance and creating new devices, thus saving both time and money. / Thesis / Doctor of Philosophy (PhD)
|
6 |
Study of mixed mode electro-optical operations of Ge2Sb2Te5Hernandez, Gerardo Rodriguez January 2017 (has links)
Chalcogenide based Phase Change Materials are currently of great technological interest in the growing field of optoelectronics. Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> (GST) is the most widely studied phase change material, and it has been commercially used in both optical and electronic data storage applications, due to its ability to switch between two different atomic configurations, at high speed and with low power consumption, as well as its high optical and electrical contrast between amorphous and crystalline states. Despite its well-known optical and electrical properties, the operation in combination of optical and electrical domains has not yet been fully investigated. This work studies the operation of GST nano-devices exposed to a combination of optical and electrical stimuli or mixed mode by asking, is it possible to electrically measure an optically induced phase change, or vice versa? If so, how do the optical and electrical responses relate to each other, and is it possible to operate GST with a combination of optical and electrical signals? What are the technical constraints that need to be considered in order to fabricate GST devices that could be operated either optically or electrically? In order to answer these questions, experiments that characterized the optical and electrical responses of GST based nano-devices were performed. It was found that different crystallization mechanisms may have influence in the response, and that the thermal and optical design characteristics of the device play a key role in its operation. Finally a proof of principle, of an opto-electonic memory device that can be read electrically, reset optically and write electrically, is presented. This opens up possibilities for the development of new opto-eloectronic applications such as non-volatile interfaces between future photonics and electronics, high speed optical communication detectors, high speed cameras, artificial retinas and many more.
|
7 |
Dynamics Of Some Nano Devices And 2D Electron SolvationChakraborty, Aniruddha 02 1900 (has links) (PDF)
No description available.
|
8 |
Investigation on high-mobility graphene hexagon boron nitride heterostructure nano-devices using low temperature scanning probe microscopyDou, Ziwei January 2018 (has links)
This thesis presents several experiments, generally aiming at visualising the ballistic and topological transport on the high-mobility graphene/boron nitride heterostructure using the scanning gate microscope. For the first experiment, we use the scanning gate microscopy to map out the trajectories of ballistic carriers in high-mobility graphene encapsulated by hexagonal boron nitride and in a weak perpendicular magnetic field. We employ a magnetic focusing transport configuration to image carriers that emerge ballistically from an injector, follow a cyclotron path due to the Lorentz force from an applied magnetic field, and land on an adjacent collector probe. The local potential generated by the scanning tip in the vicinity of the carriers deflects their trajectories, modifying the proportion of carriers focused into the collector. By measuring the voltage at the collector while scanning the tip, we are able to obtain images with arcs that are consistent with the expected cyclotron motion. We also demonstrate that the tip can be used to redirect misaligned carriers back to the collector. For the second experiment, we investigate the graphene van der Waals structures formed by aligning monolayer graphene with insulating layers of hexagonal boron nitride which exhibit a moiré superlattice that is expected to break sublattice symmetry. However, despite an energy gap of several tens of millielectronvolts opening in the Dirac spectrum, electrical resistivity remains lower than expected at low temperature and varies between devices. While subgap states are likely to play a role in this behaviour, their precise nature is still unclear in the community. We therefore perform a scanning gate microscopy study of graphene moiré superlattice devices with comparable activation energy but with different charge disorder levels. In the device with higher charge impurity ($\sim$ 10$^-$ cm$^{-2}$) and lower resistivity ($\sim$ 10 k$\Omega$) at the Dirac point we observe scanning gate response along the graphene edges. Combined with simulations, our measurements suggest that enhanced edge doping is responsible for this effect. In addition, a device with low charge impurity ($\sim$ 10$^{9}$ cm$^{-2}$) and higher resistivity ($\sim$ 100 k$\Omega$) shows subgap states in the bulk. Our measurements provide alternative model to the prevailing theory in the literature in which the topological bandstructures of the graphene moiré superlattices entail an edge currents shunting the insulating bulk. In the third experiment, we continue our study in the graphene moir$\acute e$ superlattices with the newly reported non-local Hall signals at the main Dirac point. It has been associated with the non-zero valley Berry curvature due to the gap opening and the nonlocal signal has been interpreted as the signature of the topological valley Hall effects. However, the nature of such signal is still disputed in the community, due to the vanishing density of states near the Dirac point and the possible topological edge transport in the system. Various artificial contribution without a topological origin of the measurement scheme has also been suggested. In connection to the second experiment, we use the scanning gate microscope to image the non-local Hall resistance as well as the local resistance in the current path. By analysing the features in the two sets of images, we find evidence for topological Hall current in the bulk despite a large artificial components which cannot be distinguished in global transport measurement. In the last experiment, we show the development of a radio-frequency scanning impedance microscopy compatible with the existing scanning gate microscopy and the dilution refrigerator. We detailed the design and the implementation of the radio-frequency reflectometry and the specialised tip holder for the integration of the tip and the transmission lines. We demonstrate the capability of imaging local impedance of the sample by detecting the mechanical oscillation of the tip, the device topography, and the Landau levels in the quantum Hall regime at liquid helium temperature and milli-Kelvin temperature.
|
9 |
A formal approach to the modeling, simulation and analysis of nano-devices.Pradalier, Sylvain 25 September 2009 (has links) (PDF)
Nano-devices are molecular machines synthesized from molecular subcomponents whose functions are combined in order to perform the func- tion of the machine. It frequently results of relative motions of subcomponents triggered by chemical events such as excitement induced by light, acidity or tem- perature changes. Thus the function consists in the transformation of a chemical event into a mechanical event. An important and characteristic feature of these devices is their intrinsic compositional nature. Therefore process-algebra for- malisms are natural candidates for their modeling. To this aim we introduce a dialect of the -calculus, the nano calculus. It is a rule-based language, the basic agents are molecules, with explicit representa- tion of molecular complexations and internal states. Its stochastic semantics is governed by rules which correspond to chemical reactions. The stochastic rate of the rule, possibly in nite, corresponds to the kinetic rate of the reaction. We illustrated its relevance for the modeling and simulation of nano-devices with an example stemming from the collaboration with the chemistry department of bologna: the [2]RaH rotaxane. We modeled it in nano and simulated its behaviour under various conditions of concentration: rst we validate our model by checking its correspondance with the experimental data and then we investi- gate extreme conditions not observable in practice. We were able to show that some classical assumption about kinetic rates were not correct any longer in this setting. The calculus has many advantages for the modelling of biochemical sys- tems. It is in particular compact, easily reusable and modi able and maybe more importantly much biological-like and thus easier to learn for biochemists. On the other hand the -calculus, also often used to model biochemical sys- tems, has a much more developed theory and more available tools. We present an encoding from the nano calculus to the stochastic -calculus. It satis es a very strong correctness property: S ! T , [[S]] ! [[T]], where S and T are nano terms, is the rate of the reaction and [[:]] is the encoding. Thus it permits to use nano as a front-end formalism and still get the bene ts of the theory and tools of the -calculus. We carry on with a study of the chemical master equation. It probabilisti- cally describes the possible behaviours of the system over time as a di erential equation on the probability to be in a given state at a given instant. It is a key notion in chemistry. There have been many e orts to solve it, and methods such as the Gillespie's algorithm has been developed to simulate its solution. We introduce and motivate a notion of equivalence based on the chemical master equation. It equates state with similar stochastic behavior. Then we prove that this equivalence corresponds exactly to the notion backward stochastic bisimu- lation. This bisimulation di ers from the usual ones because it considers ingoing transitions instead of outgoing transitions. This results is worth in itself since it establishes a bridge between a chemical semantics and a computer semantics, but it is also the rst step towards a metrics for biochemistry. Finally we present an unexpected consequence of our study of the nano calculus. We study the relative expressiveness of the synchronous and asyn- chronous -calculus. In the classical setting the latter is known to be strictly less expressive than the former. We prove that the separation also holds in the stochastic setting. We then extend the result to the -calculi with in nite rates. We also show that under a small restriction the asynchronous -calculus with in nite rates can encode the synchronous -calculus without in nite rates. In- terestingly the separation results are proved using the encodability of the nano calculus. We also propose and motivate a stochastic -calculus with rates of di erent orders of magnitude: the multi-scale -calculus to which we generalize our results. Finally we prove that in the probabilistic settings the asynchronous -calculus can be encoded into the asynchronous one.
|
Page generated in 0.0466 seconds