• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Investigation of Nano-voids in Aluminum by Small-angle X-ray Scattering

Westfall, Luke Aidan 28 April 2008 (has links)
Small angle x-ray scattering (SAXS) with synchrotron radiation was used to characterize nano-sized voids in different nominally pure aluminum (Al) alloys produced by quenching. The scattering signal from nano-voids is shown to be predictable from SAXS theory, and the information related to the void population confirm past experiments and reveal new details about quench-void formation in Al. Specifically, voids were produced in 99.97 at.% to 99.9994 at.% Al alloys by infrared heating to 450 – 625 °C followed by controlled rapid quenching at 10^3 to 10^5 °C/s. For changing processing conditions, the size of voids varied between 5 to 11 nm, and the density of voids varied by over an order of magnitude. Results from SAXS were consistent with TEM observations performed on the same specimens, indicating that synchrotron SAXS can be reliably used to characterize nano-voids produced in quenched Al. Factors determined to affect voids were consistent with previous studies, except that the present nano-voids dissolved after only 3 min. at 145 °C, indicating that quenched nano-voids are less stable than previously determined. SAXS also showed that void size is sensitive to quench temperature and quench rate. The activation energies for void nucleation and growth were determined to be 0.75 ± 0.10 and 0.19 ± 0.03 eV/at., respectively, confirming that hydrogen and di-vacancies take part in nucleation and growth during quenching. It was concluded that the non-linear tail of the quench curve plays a crucial role in void formation, and that voids form when long range diffusion is inhibited. This information can be utilized to design new Al alloys that limit incipient void formation, which is detrimental to properties such as formability. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2008-04-25 15:17:30.211 / Natural Sciences and Engineering Research Council of Canada; General Motors of Canada Limited
2

Dynamic variation of hydrogen dilution during hot-wire chemical vapour deposition of silicon thin films

Towfie, Nazley January 2013 (has links)
It has been debated that among all the renewable energy alternatives, only solar energy offers sufficient resources to meet energy demands. Silicon thin film solar cells are at the frontier of commercial solar technology. Hot wire chemical vapour deposition (HWCVD) is the technique of choice for silicon thin film deposition due to the absence of ion bombardment and its independence toward geometry or electromagnetic properties of the substrate, as seen by plasma enhanced chemical vapour deposition (PECVD). With the implementation of nanostructures in a multi-band gap tandem solar cell, considerable improvement has been achieved over the single junction solar cells. Defect assisted tunnelling processes at the junctions between individual solar cells in a tandem structure solar cell largely affect the efficiency of these solar cells. In this contribution, the investigation toward the improvement of silicon thin films for tandem solar cell application is initiated. This study reports on the effects of hydrogen dilution and deposition time on six silicon thin films deposited at six specific deposition regimes. The thin film properties are investigated via X-Ray diffraction analysis, Raman spectroscopy, Fourier transform infra-red spectroscopy, elastic recoil detection analysis, scanning and transmission electron microscopy and UV-visible spectroscopy. This investigation revealed the dominating etching effect of atomic hydrogen with the increase in hydrogen dilution and a bonded hydrogen content (CH) exceeding 10 at.% for each of the six thin films. The optically determined void volume fraction and static refractive index remain constant, for each thin film, with the change in CH. A new deposition procedure, utilising the deposition conditions of the previously investigated thin films, is performed by HWCVD to deposit two silicon thin films. This deposition procedure involved either increasing (protocol 1) or decreasing (protocol 2) hydrogen dilution during deposition. Structural and optical variation with depth was observed for the dynamically deposited silicon thin films, with nano-voids existing across the entire cross section and bond angle variations which are indicative of good structural order. The optical absorption curves differ for the two silicon thin films whereas the optical density remains constant for both. / >Magister Scientiae - MSc
3

Dynamic variation of hydrogen dilution during hot-wire chemical vapour deposition of silicon thin films

Towfie, Nazley January 2013 (has links)
>Magister Scientiae - MSc / This study reports on the effects of hydrogen dilution and deposition time on six silicon thin films deposited at six specific deposition regimes. The thin film properties are investigated via X-Ray diffraction analysis, raman spectroscopy, fourier transform infra-red spectroscopy, elastic recoil detection analysis, scanning and transmission electron microscopy and UV-visible spectroscopy. This investigation revealed the dominating etching effect of atomic hydrogen with the increase in hydrogen dilution and a bonded hydrogen content (CH) exceeding 10 at.% for each of the six thin films. The optically determined void volume fraction and static refractive index remain constant, for each thin film, with the change in CH

Page generated in 0.0401 seconds