• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • Tagged with
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fabrication and characterization of a solar cell using an aluminium p-doped layer in the hot-wire chemical vapour deposition process

Kotsedi, Lebogang January 2010 (has links)
<p>When the amorphous silicon (a-Si) dangling bonds are bonded to hydrogen the concentration of the dangling bond is decreased. The resulting film is called hydrogenated amorphous silicon (a-Si:H). The reduction in the dangling bonds concentration improves the optoelectrical properties of the film. The improved properties of a-Si:H makes it possible to manufacture electronic devices including a solar cell. A solar cell device based on the hydrogenated amorphous silicon (a-Si:H) was fabricated using the Hot-Wire Chemical Vapour Deposition (HWCVD). When an n-i-p solar cell configuration is grown, the norm is that the p-doped layer is deposited from a mixture of silane (SiH4) gas with diborane (B2H6). The boron atoms from diborane bonds to the silicon atoms and because of the number of the valance electrons, the grown film becomes a p-type film. Aluminium is a group 3B element and has the same valence electrons as boron, hence it will also produce a p-type film when it bonds with silicon. In this study the p-doped layer is grown from the co-deposition of a-Si:H from SiH4 with aluminium evaporation resulting in a crystallized, p-doped thin film. When this thin film is used in the n-i-p cell configuration, the device shows photo-voltaic activity. The intrinsic layer and the n-type layers for the solar cell were grown from SiH4 gas and Phosphine (PH3) gas diluted in SiH4 respectively. The individual layers of the solar cell device were characterized for both their optical and electrical properties. This was done using a variety of experimental techniques. The analyzed results from the characterization techniques showed the films to be of device quality standard. The analysed results of the ptype layer grown from aluminium showed the film to be successfully crystallized and doped. A fully functional solar cell was fabricated from these layers and the cell showed photovoltaic activity.<br /> &nbsp / </p>
2

Fabrication and characterization of a solar cell using an aluminium p-doped layer in the hot-wire chemical vapour deposition process

Kotsedi, Lebogang January 2010 (has links)
<p>When the amorphous silicon (a-Si) dangling bonds are bonded to hydrogen the concentration of the dangling bond is decreased. The resulting film is called hydrogenated amorphous silicon (a-Si:H). The reduction in the dangling bonds concentration improves the optoelectrical properties of the film. The improved properties of a-Si:H makes it possible to manufacture electronic devices including a solar cell. A solar cell device based on the hydrogenated amorphous silicon (a-Si:H) was fabricated using the Hot-Wire Chemical Vapour Deposition (HWCVD). When an n-i-p solar cell configuration is grown, the norm is that the p-doped layer is deposited from a mixture of silane (SiH4) gas with diborane (B2H6). The boron atoms from diborane bonds to the silicon atoms and because of the number of the valance electrons, the grown film becomes a p-type film. Aluminium is a group 3B element and has the same valence electrons as boron, hence it will also produce a p-type film when it bonds with silicon. In this study the p-doped layer is grown from the co-deposition of a-Si:H from SiH4 with aluminium evaporation resulting in a crystallized, p-doped thin film. When this thin film is used in the n-i-p cell configuration, the device shows photo-voltaic activity. The intrinsic layer and the n-type layers for the solar cell were grown from SiH4 gas and Phosphine (PH3) gas diluted in SiH4 respectively. The individual layers of the solar cell device were characterized for both their optical and electrical properties. This was done using a variety of experimental techniques. The analyzed results from the characterization techniques showed the films to be of device quality standard. The analysed results of the ptype layer grown from aluminium showed the film to be successfully crystallized and doped. A fully functional solar cell was fabricated from these layers and the cell showed photovoltaic activity.<br /> &nbsp / </p>
3

Dynamic variation of hydrogen dilution during hot-wire chemical vapour deposition of silicon thin films

Towfie, Nazley January 2013 (has links)
It has been debated that among all the renewable energy alternatives, only solar energy offers sufficient resources to meet energy demands. Silicon thin film solar cells are at the frontier of commercial solar technology. Hot wire chemical vapour deposition (HWCVD) is the technique of choice for silicon thin film deposition due to the absence of ion bombardment and its independence toward geometry or electromagnetic properties of the substrate, as seen by plasma enhanced chemical vapour deposition (PECVD). With the implementation of nanostructures in a multi-band gap tandem solar cell, considerable improvement has been achieved over the single junction solar cells. Defect assisted tunnelling processes at the junctions between individual solar cells in a tandem structure solar cell largely affect the efficiency of these solar cells. In this contribution, the investigation toward the improvement of silicon thin films for tandem solar cell application is initiated. This study reports on the effects of hydrogen dilution and deposition time on six silicon thin films deposited at six specific deposition regimes. The thin film properties are investigated via X-Ray diffraction analysis, Raman spectroscopy, Fourier transform infra-red spectroscopy, elastic recoil detection analysis, scanning and transmission electron microscopy and UV-visible spectroscopy. This investigation revealed the dominating etching effect of atomic hydrogen with the increase in hydrogen dilution and a bonded hydrogen content (CH) exceeding 10 at.% for each of the six thin films. The optically determined void volume fraction and static refractive index remain constant, for each thin film, with the change in CH. A new deposition procedure, utilising the deposition conditions of the previously investigated thin films, is performed by HWCVD to deposit two silicon thin films. This deposition procedure involved either increasing (protocol 1) or decreasing (protocol 2) hydrogen dilution during deposition. Structural and optical variation with depth was observed for the dynamically deposited silicon thin films, with nano-voids existing across the entire cross section and bond angle variations which are indicative of good structural order. The optical absorption curves differ for the two silicon thin films whereas the optical density remains constant for both. / >Magister Scientiae - MSc
4

Dynamic variation of hydrogen dilution during hot-wire chemical vapour deposition of silicon thin films

Towfie, Nazley January 2013 (has links)
>Magister Scientiae - MSc / This study reports on the effects of hydrogen dilution and deposition time on six silicon thin films deposited at six specific deposition regimes. The thin film properties are investigated via X-Ray diffraction analysis, raman spectroscopy, fourier transform infra-red spectroscopy, elastic recoil detection analysis, scanning and transmission electron microscopy and UV-visible spectroscopy. This investigation revealed the dominating etching effect of atomic hydrogen with the increase in hydrogen dilution and a bonded hydrogen content (CH) exceeding 10 at.% for each of the six thin films. The optically determined void volume fraction and static refractive index remain constant, for each thin film, with the change in CH
5

Fabrication and characterization of a solar cell using an aluminium p-doped layer in the hot-wire chemical vapour deposition process

Kotsedi, Lebogang January 2010 (has links)
Philosophiae Doctor - PhD / When the amorphous silicon (a-Si) dangling bonds are bonded to hydrogen the concentration of the dangling bond is decreased. The resulting film is called hydrogenated amorphous silicon (a-Si:H). The reduction in the dangling bonds concentration improves the optoelectrical properties of the film. The improved properties of a-Si:H makes it possible to manufacture electronic devices including a solar cell. A solar cell device based on the hydrogenated amorphous silicon (a-Si:H) was fabricated using the Hot-Wire Chemical Vapour Deposition (HWCVD). When an n-i-p solar cell configuration is grown, the norm is that the p-doped layer is deposited from a mixture of silane (SiH4) gas with diborane (B2H6). The boron atoms from diborane bonds to the silicon atoms and because of the number of the valance electrons, the grown film becomes a p-type film. Aluminium is a group 3B element and has the same valence electrons as boron, hence it will also produce a p-type film when it bonds with silicon. In this study the p-doped layer is grown from the co-deposition of a-Si:H from SiH4 with aluminium evaporation resulting in a crystallized, p-doped thin film. When this thin film is used in the n-i-p cell configuration, the device shows photo-voltaic activity. The intrinsic layer and the n-type layers for the solar cell were grown from SiH4 gas and Phosphine (PH3) gas diluted in SiH4 respectively. The individual layers of the solar cell device were characterized for both their optical and electrical properties. This was done using a variety of experimental techniques. The analyzed results from the characterization techniques showed the films to be of device quality standard. The analysed results of the ptype layer grown from aluminium showed the film to be successfully crystallized and doped. A fully functional solar cell was fabricated from these layers and the cell showed photovoltaic activity. / South Africa
6

Fabrication and characterization of a solar cell using an aluminium p-doped layer in the hot-wire chemical vapour deposition process

Lebogang, Kotsedi January 2010 (has links)
Philosophiae Doctor - PhD / When the amorphous silicon (a-Si) dangling bonds are bonded to hydrogen the concentration of the dangling bond is decreased. The resulting film is called hydrogenated amorphous silicon (a-Si:H). The reduction in the dangling bonds concentration improves the optoelectrical properties of the film. The improved properties of a-Si:H makes it possible to manufacture electronic devices including a solar cell.A solar cell device based on the hydrogenated amorphous silicon (a-Si:H) was fabricated using the Hot-Wire Chemical Vapour Deposition (HWCVD). When an n-i-p solar cell configuration is grown, the norm is that the p-doped layer is deposited from a mixture of silane (SiH4) gas with diborane (B2H6). The boron atoms from diborane bonds to the silicon atoms and because of the number of the valance electrons, the grown film becomes a p-type film. Aluminium is a group 3B element and has the same valence electrons as boron, hence it will also produce a p-type film when it bonds with silicon.In this study the p-doped layer is grown from the co-deposition of a-Si:H from SiH4 with aluminium evaporation resulting in a crystallized, p-doped thin film. When this thin film is used in the n-i-p cell configuration, the device shows photo-voltaic activity.The intrinsic layer and the n-type layers for the solar cell were grown from SiH4 gas and Phosphine (PH3) gas diluted in SiH4 respectively. The individual layers of the solar cell device were characterized for both their optical and electrical properties. This was done using a variety of experimental techniques. The analyzed results from the characterization techniques showed the films to be of device quality standard. The analysed results of the ptype layer grown from aluminium showed the film to be successfully crystallized and doped.A fully functional solar cell was fabricated from these layers and the cell showed photovoltaic activity.
7

Hot-wire chemical vapor deposition of silicon nitride thin films

Adams, Abdulghaaliq January 2013 (has links)
Magister Scientiae - MSc / Amorphous silicon nitride (a-SiN:H) thin films has a multitude of applications, stemming from the tunability of the material properties. Plasma enhanced chemical vapour deposition (PECVD) is the industrial workhorse for production of device quality a-SiN:H. However, this technique has drawbacks in terms of film quality, rooting from ion bombardment, which then results in undesirable oxidation. Hot wire chemical vapour deposition (HWCVD) has shown to be a viable competitor to its more costly counterpart, PECVD. A thin film produced by HWCVD lacks ion bombardment due to the deposition taking place in the absence of plasma. This study will focus on optimising the MVsystems ® HWCVD chamber at The University of the Western Cape, for production of device quality a-SiN:H thin films at low processing parameters. The effect of these parameters on the structural, optical and morphological properties was investigated, for reduction of production costs. The films were probed by heavy ion elastic recoil detection, energy dispersive spectroscopy, Fourier transform infrared spectroscopy, atomic force microscopy, Xray diffraction, and ultraviolet visible spectroscopy. It was shown that silicon rich, device quality a-SiN:H thin films could be produced by HWCVD at wire temperatures as low as 1400 °C and the films showed considerable resistance to oxidation in the bulk.
8

Optical properties of annealed hydrogenated amorphous silicon nitride (a-SiNx:H) thin films for photovoltaic application

Jacobs, Sulaiman January 2013 (has links)
Magister Scientiae - MSc / Technological advancement has created a market for large area electronics such as solar cells and thin film transistors (TFT’s). Such devices now play an important role in modern society. Various types of conducting, semiconducting and insulating thin films of the order of hundreds, or even tens of nanometres are combined in strata to form stacks to create interactions and phenomena that can be exploited and employed in these devices for the benefit of mankind. One such is for the generation of energy via photovoltaic devices that use thin film technology; these are known as second and third generation solar cells. Silicon and its alloys such as silicon germanium (SiGex), silicon oxide (SiOx), silicon carbide (SiCx) and silicon nitride (SiNx) play an important role in these devices due to the fact that each material in its different structures, whether amorphous, micro or nano-crystalline or completely crystalline, has its own range of unique optical, mechanical and electrical properties. These structures and their material properties can thus exert a huge influence over the overall device performance. viii Chemical vapour deposition (CVD) techniques are most widely used in industry to obtain thin films of silicon and silicon alloys. Source gases are decomposed by the external provision of energy thereby allowing for the growth of a thin solid film on a substrate. In this study a variant of CVD, namely Hot Wire Chemical Vapour Deposition (HWCVD) will be used to deposit thin films of silicon nitride by the decomposition of silane (SiH4), hydrogen (H2) and ammonia (NH3) on a hot tantalum filament (~1600 C). Hydrogenated amorphous silicon nitride (a-SiNx:H) has great potential for application in optoelectronic devices. In commercial solar cell production its potential for use as anti-reflection coatings are due to its intermediate refractive index combined with low light absorption. An additional benefit is the passivation of interface and crystal defects due to the bonded hydrogen. This can lead to better photon conversion efficiency. Its optical properties including optical band gap, Urbach tail, and wavelength-dependent optical constants such as absorption coefficient and refractive index are crucial for the design and application in the relevant optoelectronic device. The final firing step in the production of micro-crystalline silicon solar cells, allows hydrogen to effuse into the solar cell from the a-SiNx:H, and drives bulk passivation of the grain boundaries. We therefore propose the exploration of annealing effects on the thin film structure. The study undertakes a comparison of optical and bonding structure of the as deposited thin film compared to that of the annealed thin film which would have undergone changes due to high temperature annealing under vacuum. However, it is difficult to simultaneously obtain all of these important ix optical parameters for a-SiNx:H thin films. Ultraviolet visible (UV-vis) spectroscopy will be the method of choice to investigate the optical properties. Infrared (IR) spectroscopy is a source of useful information on the microstructure of the material. In particular, the local atomic bonding configurations involving Si, N, and H atoms in a-SiNx:H films can be obtained by Fourier Transform Infrared Spectroscopy (FTIR). Therefore, this study will attempt to establish a relationship between film microstructure of a-SiNx:H thin films and their macroscopic optical properties.
9

Macroscopic and Microscopic surface features of Hydrogenated silicon thin films

Pepenene, Refuoe Donald January 2018 (has links)
Magister Scientiae - MSc (Physics) / An increasing energy demand and growing environmental concerns regarding the use of fossil fuels in South Africa has led to the challenge to explore cheap, alternative sources of energy. The generation of electricity from Photovoltaic (PV) devices such as solar cells is currently seen as a viable alternative source of clean energy. As such, crystalline, amorphous and nanocrystalline silicon thin films are expected to play increasingly important roles as economically viable materials for PV development. Despite the growing interest shown in these materials, challenges such as the partial understanding of standardized measurement protocols, and the relationship between the structure and optoelectronic properties still need to be overcome.

Page generated in 0.1454 seconds