• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tenacificação em Nanocompósitos de Poliamida 6 e Argila / Toughening of polyamide 6 nanocomposites and clay

Marcelo Ferreira Leão de Oliveira 11 June 2010 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nanocompósitos de poliamida 6 (PA6) e montmorilonita modificada com sal de amônio quaternário têm sido estudados, visando melhorar as propriedades térmicas e mecânicas. De fato os efeitos da nano-escala e da interação carga-matriz resultam em maior módulo de elasticidade e resistência à tração, porém a deformação é reduzida. Assim, nesse trabalho, optou-se por adicionar elastômeros, terpolímero de etileno-propileno-dieno (EPDM) e terpolímero de etileno-propileno-dieno modificado com anidrido maleico (EPDM-MA), ao sistema PA 6/argila organofílica para recuperar os valores de deformação. Foi utilizada montmorilonita modificada com cloreto de dimetildioctadecil amônio. A intercalação por fusão foi realizada em câmara interna de mistura. Além das propriedades mecânicas, térmicas e reológicas, foram investigadas as modificações na cristalinidade da fase PA-6 em função da adição da argila modificada, EPDM e EPDM-MA, detectando-se as variações no grau de cristalinidade e nas temperaturas de fusão e cristalização. Os difratogramas de raios-x revelaram ocorrência de intercalação/esfoliação e também modificação da forma cristalina da PA 6, indicando a formação do cristal gama / Nanocomposites of polyamide 6 and montmorillonite modified with alquil-ammonium salts have been studied, searching for the improvement of mechanical and thermal properties. In fact the effects of the nano-scale and the interaction matrix-filler result in larger module of elasticity and tensile strength. However, the elongation at break was greatly reduced. Therefore, in this work, it has been decided to add elastomers, ethylene-proplene-diene terpolymer (EPDM) and ethylene-proplene-diene terpolymer funcionalized with maleic anhydride (EPDM-MA), to the system PA6/organoclay, using modified montmorillonite with ditallowdimethylammonium chloride. The nanocomposites were prepared by melt intercalation technique in a mix internal chamber. Besides the mechanical, thermal and rheological properties, the modifications in the crystallinity of PA6 phase were investigated, being detected the variations in the degree of crystallinity and in the melt temperature and crystallization. The diffractograms of x-ray (XRD) revealed occurrence of intercalation/exfoliation as well as modification of the crystalline form of PA 6, indicating the formation of  crystals
2

Preparation Of Clay-polymer Nanocomposite For The Retardation Of Waste Water Infiltration In Landfill Sites

Bildiren, Mert 01 September 2007 (has links) (PDF)
In this thesis study, the use of clay-polymer nanocomposites for their applicability in landfill sites as a product of retardation of waste water infiltration was evaluated. For this purpose, organophilic clays from HDTMA+ organic cation and nanocomposites of montmorillonite were prepared. The bentonite samples B1, B2 and B3 dominantly contain 2:1 layer montmorillonite and 1:1 interstratification of illite/smectite mixed layer as clay minerals. B1 is an unmodified yellow bentonite and B2 is a grey bentonite modified from B1, by the addition of Na2CO3 (Soda Ash). They were obtained from Han&ccedil / ili (Kalecik-Ankara) bentonite deposit which belongs to the Hancili Formation of Early Pliocene age. B3 is a standard Wyoming (SWy-1) white bentonite and belongs to the Newcastle formation of Cretaceous age. Their cation exchange and swelling capacity values were determined and the values increase from B1, B2 to B3. In order to produce clay-polymer nanocomposites, firstly organoclays were produced in bentonite samples. Claypolymer nanocomposite production was achieved by in situ intercalative polymerization successfully with intercalation and partly exfoliation of clay minerals with polyacrylamide (PAM). The samples of sand (S1), sand+bentonite (S2) and sand+nanocomposite (S3) mixtures were prepared and their permeability was determined. As a result of these values, the permeability of samples decrease from S1, S2 to S3. The results imply that the permeability of sample decreases as the claypolymer nanocomposite content increases resulting in a retardation of water penetration throughout the sample. The product has a potential to be used as a retardant for waste water infiltration in landfill sites.
3

Impact Modified Polystyrene Based Nanocomposites

Yeniova, Canan Esma 01 January 2009 (has links) (PDF)
Polystyrene, PS, is a preferable polymer in industry, but, its brittle characteristic restricts its utilization. The aim of this study is to improve the impact strength of PS by the help of elastomeric materials SEBS-g-MA and E-BA-GMA. In order to prevent the reduction in the tensile strength of the materials, three different types of organic montmorillonites, MMT, (Cloisite&reg / 30B, 25A and 15A) were used as fillers. Nanocomposite preparation was performed in a co-rotating twin screw extruder. Initially elastomer and organoclay contents were kept at 5wt% and 1-2wt% respectively. Well dispersed silicate layers were obtained for the nanocomposite containing SEBS-g-MA and Cloisite&reg / 25A owing to the high viscosity of SEBS-g-MA and the solubility of polystyrene end block of SEBS with PS matrix. Owing to higher hydrophobicity of Cloisite&reg / 15A a better dispersion was expected compared to Cloisite&reg / 25A, but, it was concluded that two long aliphatic tails of Cloisite&reg / 15A limited the access of polymer chains to the clay surface. The desired impact strength values could not be achieved by using 5wt% elastomeric materials / therefore, it was decided to increase the SEBS-g-MA content up to 15, 20, 30 and 40wt%. With increasing elastomer content, increasing average elastomer domain size was obtained. Also, it was observed that with the addition of organoclay, the elastomeric domain size increases since the clay particles reside in the elastomer phase and at the interphase between elastomer and PS. The mechanical test results showed that the nanocomposites containing 15 and 20wt% SEBS-g-MA have the optimum average domain size that results in better impact strength values without deteriorating tensile properties.
4

Tenacificação em Nanocompósitos de Poliamida 6 e Argila / Toughening of polyamide 6 nanocomposites and clay

Marcelo Ferreira Leão de Oliveira 11 June 2010 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nanocompósitos de poliamida 6 (PA6) e montmorilonita modificada com sal de amônio quaternário têm sido estudados, visando melhorar as propriedades térmicas e mecânicas. De fato os efeitos da nano-escala e da interação carga-matriz resultam em maior módulo de elasticidade e resistência à tração, porém a deformação é reduzida. Assim, nesse trabalho, optou-se por adicionar elastômeros, terpolímero de etileno-propileno-dieno (EPDM) e terpolímero de etileno-propileno-dieno modificado com anidrido maleico (EPDM-MA), ao sistema PA 6/argila organofílica para recuperar os valores de deformação. Foi utilizada montmorilonita modificada com cloreto de dimetildioctadecil amônio. A intercalação por fusão foi realizada em câmara interna de mistura. Além das propriedades mecânicas, térmicas e reológicas, foram investigadas as modificações na cristalinidade da fase PA-6 em função da adição da argila modificada, EPDM e EPDM-MA, detectando-se as variações no grau de cristalinidade e nas temperaturas de fusão e cristalização. Os difratogramas de raios-x revelaram ocorrência de intercalação/esfoliação e também modificação da forma cristalina da PA 6, indicando a formação do cristal gama / Nanocomposites of polyamide 6 and montmorillonite modified with alquil-ammonium salts have been studied, searching for the improvement of mechanical and thermal properties. In fact the effects of the nano-scale and the interaction matrix-filler result in larger module of elasticity and tensile strength. However, the elongation at break was greatly reduced. Therefore, in this work, it has been decided to add elastomers, ethylene-proplene-diene terpolymer (EPDM) and ethylene-proplene-diene terpolymer funcionalized with maleic anhydride (EPDM-MA), to the system PA6/organoclay, using modified montmorillonite with ditallowdimethylammonium chloride. The nanocomposites were prepared by melt intercalation technique in a mix internal chamber. Besides the mechanical, thermal and rheological properties, the modifications in the crystallinity of PA6 phase were investigated, being detected the variations in the degree of crystallinity and in the melt temperature and crystallization. The diffractograms of x-ray (XRD) revealed occurrence of intercalation/exfoliation as well as modification of the crystalline form of PA 6, indicating the formation of  crystals

Page generated in 0.065 seconds