• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 89
  • 9
  • 8
  • 7
  • 4
  • 2
  • 2
  • Tagged with
  • 141
  • 51
  • 36
  • 33
  • 30
  • 22
  • 22
  • 21
  • 20
  • 18
  • 15
  • 14
  • 14
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Effect of fiber diameter and web porosity on breathability of nanofiber mats at various test conditions

Yuan, Wei, active 21st century 14 October 2014 (has links)
Barrier fabrics laminated with nanofiber membranes are used in protective textiles due to their ability to achieve high breathability or water vapor transmission rate (WVTR) while maintaining required barrier properties. The objective of this thesis is to investigate the factors impacting nanofiber membrane breathability. To achieve this objective, the effect of test conditions on breathability, and the relationship between fiber diameter, web porosity and breathability were explored. Nanofiber membranes were solution-spun by electrospinning from 15wt% and 20wt% PA6 solution concentrations, and by forcespinning from 20wt% and 25wt% concentrations. Three web area densities were made from each spinning method and solution combination: 5GSM, 10GSM and 15GSM. In order to investigate the impact of measurement conditions, breathability of all samples was measured by upright cup method (ASTM E96B) at two relative humidity levels (20% and 50%), and three air flow velocity levels (300fpm, 500fpm and 700fpm). The results showed that WVTR of all samples increased significantly when decreasing humidity or increasing air flow velocity. Webs with a lower density (5GSM or 10GSM) had higher changes of WVTR than those with a higher density (10GSM or 15GSM). These results indicate an interaction between the ambient conditions and the nanoweb structure, whereby conditions that are more conducive to water vapor transmission, such as 20%RH and 700fpm, are more discriminant between membranes. Both electropspun and forcespun membranes processed from the lower concentration solutions (15wt%, and 20wt%, respectively) exhibited smaller fiber diameters and smaller mean pore size. Overall, WVTR values varied with membrane thickness, and with solution concentration following a similar pattern as porosity. These effects were more accentuated for the forcespun samples, which had considerably larger pores (2811-5230nm) than the electrospun counterparts (163-298nm). Furthermore, samples forcespun by 20wt% solution were found to have clearly higher WVTR (1587-2194g/m²/24h at 700fpm) than electrospun samples (1526-1614g/m²/24h at 700fpm). This can be explained by the significant difference of pore size between electrospun and forcespun webs. It was concluded that breathability of forcespun samples, particularly those low density ones, could be effectively adjusted by solution concentration and is more sensitive to change of test conditions than that of electrospun webs. / text
42

Estudos preliminares sobre a valorização têxtil de penas provindas da indústria da avicultura. / Contribution to physical characterization and mechanics of feathers for textile industry.

Alonso, Raquel Seawright 24 March 2017 (has links)
A indústria da avicultura mundial produz, anualmente, bilhões de toneladas de penas e penugens de frango, pato, peru e ganso. Grande parte desse produto de descarte é incinerado em aterros causando poluição da atmosfera e do solo. Por isso, foi crucial o desenvolvimento de novas ideias para aplicações comerciais do bioproduto de penas e penugens. Assim, neste trabalho de tese, caracterizaram-se as fibras de penas e penugens nos âmbitos físico-mecânico, térmico e acústico e desenvolveram-se dois produtos comerciais: nãotecidos de penas e de penugens pelo processo de agulhadeira e nãotecidos de nanofibras da queratina de penas e penugens por electrospinning. Os resultados foram analisados através de métodos estatísticos a fim de validar as análises. Pode-se, então reciclar as penas e utilizá-las como matéria-prima para a indústria têxtil e de materiais. Além disso, as penas são facilmente utilisáveis devido à sua qualidade, baixo custo e quantidade disponível. Deste modo, penas recicladas não só reduzem os custos do produto final, mas também criam um movimento ambiental para desenvolver uma economia circular eco-friendly. / The poultry industry produces billions tons of chicken, duck, turkey and goose feathers and down feathers worldwide annually. Most of these waste products are incinerated in landfills resulting in pollution of atmosphere and land. For these reasons, it was crucial to develop new ideas for commercial applications of feathers and downs as a fiber byproducts. In this thesis work, feathers and down as fibers were characterized in physical, mechanical, thermal and acoustic scopes and two commercial products were developed using feather and down feathers: nonwoven by dry laid needle punched process and nanofibers nonwovens of keratin by electrospinning process. The results were analyzed using statistical methods to validate the analysis. Thereby, feathers were recycled and used as a raw material for the textile and materials industry. Furthermore, they are easly usable due to their quality, low cost and the available quantity. Moreover, recycled feathers not only reduce the costs of the final product but also create an environmental movement to develop an eco-friendly circular economy.
43

Stimulated Raman scattering in the evanescent field of nanofibers / Diffusion Raman stimulée dans le champ évanescent de nanofibres

Shan, Liye 19 December 2012 (has links)
Cette thèse porte sur les mélanges d’onde non linéaires qui peuvent avoir lieu dans le champ évanescent de nanofibres de silice. Nous nous sommes plus particulièrement intéressés à la diffusion Raman stimulée qui est obtenue par l’interaction du champ évanescent très intense et un liquide non linéaire dans lequel baigne la nanofibre. Afin de mettre en évidence la diffusion Raman stimulée« évanescente », nous avons développé un modèle de simulation non linéaire dont le but est de déterminer les caractéristiques des nanofibres à réaliser. Le gain Raman modal est calculé afin de trouver le rayon optimal des nanofibres pour chaque liquide ou mélange de liquides possible. En considérant la puissance critique et le seuil de dommage de nos nanofibres, nous avons déduit la longueur minimale d’interaction. Les conditions d’adiabacité des parties évasées menant à la nanofibre sont également discutées. Ces spécifications nous ont amenés à développer une plateforme de tirage de nanofibres spécifiquement dédiée à ces expériences de non-linéarités évanescentes. Cette palteforme nous permet de tirer des nanofibres de diamètre allant jusqu’à 200 nm sur des longueurs de 10 cm, avec plus de 90% de transmission. Avec ces nanofibres, nous avons mis en évidence le premier ordre Stokes de l’éthanol dans le champ évanescent d’une nanofibre, ainsi que les premier et second ordres Stokes du toluène. Ces premières expériences sont en très bon accord avec nos simulations et ouvrent la voie à de nombreuses expériences en optique non linéaire. / The present PhD thesis explored nonlinear wave mixing with the strong evanescent field of nanofibers. The focus has been on the effect of stimulated Raman scattering which is activated by the interaction between such a strong evanescent field and the nonlinear liquid surrounding the nanofiber. In order to observe the stimulated Raman scattering, we investigated the nonlinear modeling to determine the needed characteristics of the nanofibers. The modal Raman gain was calculated to determine the optimal radius of nanofibers for each possible liquid. Considering the critical power and the damage threshold of our nanofibers, we found the minimum required interaction length. The condition of adiabacity of the tapers was also described. These specifications of nanofibers guide us towards the design of a proper pulling system. Several pulling systems and techniques are investigated for the fabrication of our specific nanofibers. We now are able to fabricate low loss uniform nanofibers of up to 10 cm long, a diameter down to 200 nm, with two identical low loss tapers by using our own designed translation stage pulling platform and implemented with the “variable heat brush” technique. With the achieved nanofibers, the Raman effect induced in the evanescent field was observed in both pure (ethanol) and binary mixture (toluene in ethanol) liquids. These first measurements are in good agreement with our simulation even without any fitting parameters in the modeling.
44

Nanofiber-enabled multi-target passive sampling device for legacy and emerging organic contaminants

Qian, Jiajie 01 August 2018 (has links)
The widespread environmental occurrence of chemical pollutants presents an ongoing threat to human and ecosystem health. This challenge is compounded by the diversity of chemicals used in industry, commerce, agriculture and medicine, which results in a spectrum of potential fates and exposure profiles upon their inevitable release into the environment. This, in turn, confounds risk assessment, where challenges persist in accurate determination of concentrations levels, as well as spatial and temporal distributions, of pollutants in environmental media (e.g., water, air, soil and sediments). Passive sampling technologies continue to gain acceptance as a means for simplifying environmental occurrence studies and, ultimately, improving the quality of chemical risk assessment. Passive samplers rely on the accumulation of a target analyte into a matrix via molecular diffusion, which is driven by the difference in chemical potential between the analyte in the environment and the sampling media (e.g., sorbent phase). After deployment, the target analyte can be extracted from the sampling media and quantified, providing an integrated, time-weighted average pollutant concentration via a cost-effective platform that requires little energy or manpower when compared to active (e.g., grab) sampling approaches. While a promising, maturing technology, however, limitations exist in current commercially available passive samplers; they are typically limited in the types of chemicals that can be targeted effectively, can require long deployment times to accumulate sufficient chemical for analysis, and struggle with charged analytes. In this dissertation, we have designed a next-generation, nanofiber sorbent as a passive sampling device for routine monitoring of both legacy and emerging organic pollutant classes in water and sediment. The polymer nanofiber networks fabricated herein exhibit a high surface area to volume ratio (SA/V values) which shortens the deployment time. Uptake studies of these polymer nanofiber samplers suggest that field deployment could be shortened to less than one day for surface water analysis, effectively operating as an equilibrium passives sampling device, and twenty days for pore water analysis in soil and sediment studies. By comparison, most commercially available passive sampler models generally require at least a month of deployment before comparable analyses may be made. Another highlight of the nanofiber materials produced herein is their broad target application range. We demonstrate that both hydrophobic (e.g., persistent organic pollutants, or POPs, like PCBs and dioxin) and hydrophilic (e.g., emerging pollutant classes including pesticides, pharmaceuticals and personal care products) targets can be rapidly accumulated with our optimal nanofibers formulations. This suggests that one of our devices could potentially replace multiple commercial passive sampling devices, which often exhibit a more limited range of analyte targets. We also present several approaches for tailoring nanofiber physical and chemical properties to specifically target particular high priority pollutant classes (e.g., PFAS). Three promising modification approaches validated herein include: (i) fabricating carbon nanotube-polymer composites to capture polar compounds; (ii) introducing surface-segregating cationic surfactants to target anionic pollutants (e.g., the pesticide 2,4-D and perfluorooctanoic acid or PFOA); and (iii) use of leachable surfactants as porogens to increase nanofiber pore volume and surface area to increase material capacity. Collectively, outcomes of this work will guide the future development of next generation passive samplers by establishing broadly generalizable structure-activity relationships. All told, we present data related to the influence on the rate and extent of pollutant uptake in polymer nanofiber matrices as a function of both physical (specific surface area, pore volume, and diameter) and chemical (e.g., bulk and surface composition, nanofiber wettability, surface charge) nanofiber properties. We also present modeling results describing sampler operation that can be used to assess and predict passive sampler performance prior to field deployment. The electrospun nanofiber mats (ENMs) developed as passive sampling devices herein provide greater functionality and allow for customizable products for application to a wide range of chemical diverse organic pollutants. Combined with advances in and expansion of the nanotechnology sector, we envision this product could be made commercially available so as to expand the use and improve the performance of passive sampling technologies in environmental monitoring studies.
45

Development of piezocatalytic nanomaterials for applications in sustainable water treatment

Jennings, Brandon 01 May 2017 (has links)
Piezoelectric materials produce an electric potential in response to a mechanical strain. They are, therefore, capable of converting ambient waste mechanical energy into useful electrical energy which, in turn, may be harnessed and used as a supplemental source of power in a variety of applications. Engineered piezoelectric materials may be deployed to improve treatment efficiency during the production of potable water, which is both chemically and energetically intensive. Ambient mechanical energy is prevalent in municipal water treatment. Vibrations induced by water treatment plant pumps (such as High Service Pumps), turbulence resulting from cross-flow or dead-end membrane filtration, or agitation from mechanical mixing (paddle or impeller) may provide sufficient input mechanical input energy to activate a piezoelectric response. The objective of this work was to fabricate and characterize a range of nanofiber-based piezoelectric materials and demonstrate their application as an alternative energy supply for driving environmental treatment (e.g., pollutant degradation) via simple mechanical agitation. To achieve this objective, we fabricated a variety of piezoelectric nanofiber composite mats consisting of barium titanate (BTO) nanocrystals grown via an alkaline hydrothermal method atop an electrospun carbon nanofiber (CNF) support. We hypothesized that the greatest degree of piezoelectric activity (as measured by the voltage produced as a function of mechanical strain) would be achieved for nanofiber composites containing BTO with the largest fraction of tetragonal crystal structure, known to be piezoelectrically active. A systematic study on the impacts of hydrothermal treatment time, temperature, as well as the influence of ethylene glycol as an organic co-solvent on BTO crystal size and morphology was performed. For example, ethylene glycol was found to disrupt the dissolution-precipitation mechanism of BTO crystal growth and instead spurred the growth of BTO nanorods and nanosheets on the CNF support. After characterization, the strength and electromechanical properties of various BTO-CNF composites was assessed. In some cases, output voltages have been measured on the order of 2.0 V/cm2 in response to surface bending strain induced by a custom cantilever-oscillometer apparatus. Optimal fractions of BTO loading in the composites were assessed through mass-loading electromechanical studies. As a proof of concept application, BTO nanoheterostructures were shown to utilize ultrasonic vibrations to degrade sodium orange II salt (4-(2-Hydroxy-1-naphthylazo)benzenesulfonic acid sodium salt) via piezocatalysis. Ongoing and future work will continue to develop optimized piezocatalytic nanoheterostructures able to harvest the electrochemical potential generated from mechanical agitation and structural deformation for the production of oxidizing and reducing equivalents for degradation of persistent and emerging organic contaminants and disinfection in water treatment.
46

Estudos preliminares sobre a valorização têxtil de penas provindas da indústria da avicultura / Contribution à la caractérisation physique et mécanique de plumes en vue de leur valorisation textile / Contribution to the physical and mechanical characterization of feathers for textile valorization

Seawright Alonso, Raquel 24 March 2017 (has links)
Annuellement, l'industrie mondiale de la volaille produit des milliards de tonnes de plumes et de duvets de poule, canard, oie et dinde. Une grande partie de ces déchets sont incinérés dans des décharges polluant l'atmosphère et le sol. Il est donc crucial de développer de nouvelles idées pour des applications commerciales des bioproduits de plumes et de duvets. Ainsi, dans ce travail de thèse, les fibres de plumes et de duvets ont été caracterisées au niveau physique, mécanique, thermique et acoustique. Deux produits commerciaux ont été développés avec les plumes et les duvets : des nontissés par un processus d’aiguilletage et des nontissés de nanofibres de kératine par electrospinning. Les données ont été analysés en utilisant des méthodes statistiques pour valider les résultats. Les plumes ont pu être recyclées comme matière première pour l'industrie du textile et des matériaux. Les plumes sont facilement utilisables en raison de leur qualité, leur faible coût et les quantités disponibles. Ainsi, des plumes recyclées non seulement réduisent les coûts du produit final, mais aussi créent un mouvement écologique pour développer une économie durable. / The poultry industry produces billions tons of chicken, duck, turkey and goose feathers and down feathers worldwide annually. Most of these waste products are incinerated in landfills resulting in pollution of atmosphere and land. For these reasons, it was crucial to develop new ideas for commercial applications of feathers and downs as a fiber byproducts. In this thesis work, feathers and down as fibers were characterized in physical, mechanical, thermal and acoustic scopes and two commercial products were developed using feather and down feathers: nonwoven by dry laid needle punched process and nanofibers nonwovens of keratin by electrospinning process. The results were analyzed using statistical methods to validate the analysis. Thereby, feathers were recycled and used as a raw material for the textile and materials industry. Furthermore, they are easly usable due to their quality, low cost and the available quantity. Moreover, recycled feathers not only reduce the costs of the final product but also create an environmental movement to develop an eco-friendly circular economy.
47

Fabrication and Comparison of Electrospun Cobalt Oxide-Antimony Doped Tin Oxide (CoO-ATO) Nanofibers made with PS: D-limonene and PS: Toluene

Devisetty Subramanyam, Manopriya 04 November 2014 (has links)
This work investigates the fabrication, process optimization, and characterization of cobalt oxide-antimony doped tin oxide (CoO-ATO) nanofibersusing polystyrene (PS) solutions with toluene orD-limonene as solvents. These nanofibers are produced by anelectrospinning process. Nanofibers are fabricated using polymeric solutions of CoO doped ATO and mixtures of PS: D-limonene and PS:toluene. PSis a base aromatic organic polymer, a non-toxic material, and a versatile catalyst for fiber formation. PSsolutions are made by mixing polystyrene beads and D-limonene or toluene at specific weight percentages. These polymeric solutions of PS: D-limonene and PS:toluene are then mixed with CoO-ATO at various weight percentages. The two solutions are electrospun and the best process parameters optimized to obtain nanofibers with limited beading. Process optimization is completed by analyzing how changes in the electrospinningexperimental set up impact nanofiber formation and production efficiency (speed of formation). CoO-ATO nanofibers are characterizedby scanning electron microscopy, hydrophobicity via contact angle measurements, and viscosity measurements. Additional analysis is conducted to evaluate the environmental impact of using two different solvents to fabricate the CoO-ATO nanofibers. In this project, I was able to successfully produce novel nanofiber membranes of CoO-ATOusing two different solvents. These investigations were conducted and nanofiberprocess optimized to provide a technological contribution to future industrial scaleproductions of thermally reflective materials.
48

Electric field manipulation of polymer nanocomposites: processing and investigation of their physical characteristics

Banda, Sumanth 15 May 2009 (has links)
Research in nanoparticle-reinforced composites is predicated by the promise for exceptional properties. However, to date the performance of nanocomposites has not reached its potential due to processing challenges such as inadequate dispersion and patterning of nanoparticles, and poor bonding and weak interfaces. The main objective of this dissertation is to improve the physical properties of polymer nanocomposites at low nanoparticle loading. The first step towards improving the physical properties is to achieve a good homogenous dispersion of carbon nanofibers (CNFs) and single wall carbon nanotubes (SWNTs) in the polymer matrix; the second step is to manipulate the well-dispersed CNFs and SWNTs in polymers by using an AC electric field. Different techniques are explored to achieve homogenous dispersion of CNFs and SWNTs in three polymer matrices (epoxy, polyimide and acrylate) without detrimentally affecting the nanoparticle morphology. The three main factors that influence CNF and SWNT dispersion are: use of solvent, sonication time, and type of mixing. Once a dispersion procedure is optimized for each polymer system, the study moves to the next step. Low concentrations of well dispersed CNFs and SWNTs are successfully manipulated by means of an AC electric field in acrylate and epoxy polymer solutions. To monitor the change in microstructure, alignment is observed under an optical microscope, which identifies a two-step process: rotation of CNFs and SWNTs in the direction of electric field and chaining of CNFs and SWNTs. In the final step, the aligned microstructure is preserved by curing the polymer medium, either thermally (epoxy) or chemically (acrylate). The conductivity and dielectric constant in the parallel and perpendicular direction increased with increase in alignment frequency. The values in the parallel direction are greater than the values in the perpendicular direction and anisotropy in conductivity increased with increase in AC electric field frequency. There is an 11 orders magnitude increase in electrical conductivity of 0.1 wt% CNF-epoxy nanocomposite that is aligned at 100 V/mm and 1 kHz frequency for 90 minutes. Electric field magnitude, frequency and time are tuned to improve and achieve desired physical properties at very low nanoparticle loadings.
49

Electrospinning Of Polystyrene/butly Rubber Blends: A Parametric Study

Goktas, Ahmet 01 February 2008 (has links) (PDF)
Nanofibers, which have high surface area to volume ratio and better mechanical properties, are nanomaterials that both industry and scientists have started to show great attention in the last two decades. They are used in many areas such as life and filtration sciences, sensors, and composite reinforcement etc. Among five main production types, electrospinning is the best candidate for further development with a wide range of opportunities to be applied to all types of polymers and ceramics. This method uses electrically charged jet of polymers or liquid states of polymers to produce fibers from micro dimensions down to nano dimensions. Electrospinning setup has mainly three parts / (i) an AC/DC high voltage equipment which creates high electrical potential, (ii) a syringe, and (iii) a collecting screen. The purpose of this study is to electrospin polystyrene/butyl rubber blends and to investigate the effects of electrospinning parameters on the fibers produced. In this study, polystyrene/butyl rubber blends were electrospun by changing the applied voltage, the tip-to-collector distance, the flowrate, and the butyl rubber content in the fiber. Finally, morphology of electrospun fibers was characterized by SEM. The average fiber diameters varied from 760 nm to nearly 10 &micro / m. Increasing butyl rubber content in the fiber resulted in a decrease in the final fiber diameter. Increasing applied voltage also caused a decrease in the final fiber diameter. The tip-to-collector distance did not affect the average fiber diameter. Increasing flowrate yielded fibers with larger diameters. Finally, the addition of non-ionic surfactant decreased the average fiber diameter.
50

Electrospun nanofiber meshes for the functional repair of bone defects

Kolambkar, Yash Manohar 16 November 2009 (has links)
Bone defects caused by trauma, tumor resection or disease present a significant clinical problem. Failures in 'high risk' fractures and large bone defects have been reported to be as high as 30-50%. The drawbacks associated with current bone grafting procedures have stimulated the search for improved techniques for bone repair. Tissue engineering/regenerative medicine approaches promote tissue repair by providing a combination of physical and biological cues through structural scaffolds and bioactive agents. Though they have demonstrated significant promise for bone regeneration, very little has been translated to clinical practice. The goal of this thesis was to investigate the potential of electrospun nanofiber mesh scaffolds for bone regeneration. Nanofiber meshes were utilized in a three-pronged approach. First, we validated their ability to robustly support osteogenic cell functions, including proliferation and matrix mineralization. We also demonstrated their efficacy as a cell delivery vehicle. Second, we investigated the effects of modulating nanofiber bioactivity and orientation on stem cell programming. Our results indicate that functionalization of nanofiber meshes with a collagen-mimetic peptide enhanced the migration, proliferation and osteogenic differentiation of cells. Fiber alignment improved cell migration along the direction of fiber orientation. Finally, a nanofiber mesh based hybrid system for growth factor delivery was developed for bone repair and tested in a challenging animal model. The delivery of bone morphogenetic protein (BMP) via this system resulted in the functional restoration of limb function, and in fact proved more efficacious than the current clinical standard for BMP delivery. The studies performed in this thesis have suggested novel techniques for improving the repair of clinically challenging bone defects. They indicate that the delivery of BMP via the hybrid system may reduce the dose and side effects of BMP, thereby broadening the use of BMP based bone augmentation procedures. Therefore, this nanofiber mesh based system has the potential to become the standard of care for clinically challenging bone defects, including large bone defects, open tibial fractures, and nonunions.

Page generated in 0.0548 seconds