• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 5
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 33
  • 10
  • 10
  • 8
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Stimulated Raman scattering in the evanescent field of nanofibers / Diffusion Raman stimulée dans le champ évanescent de nanofibres

Shan, Liye 19 December 2012 (has links)
Cette thèse porte sur les mélanges d’onde non linéaires qui peuvent avoir lieu dans le champ évanescent de nanofibres de silice. Nous nous sommes plus particulièrement intéressés à la diffusion Raman stimulée qui est obtenue par l’interaction du champ évanescent très intense et un liquide non linéaire dans lequel baigne la nanofibre. Afin de mettre en évidence la diffusion Raman stimulée« évanescente », nous avons développé un modèle de simulation non linéaire dont le but est de déterminer les caractéristiques des nanofibres à réaliser. Le gain Raman modal est calculé afin de trouver le rayon optimal des nanofibres pour chaque liquide ou mélange de liquides possible. En considérant la puissance critique et le seuil de dommage de nos nanofibres, nous avons déduit la longueur minimale d’interaction. Les conditions d’adiabacité des parties évasées menant à la nanofibre sont également discutées. Ces spécifications nous ont amenés à développer une plateforme de tirage de nanofibres spécifiquement dédiée à ces expériences de non-linéarités évanescentes. Cette palteforme nous permet de tirer des nanofibres de diamètre allant jusqu’à 200 nm sur des longueurs de 10 cm, avec plus de 90% de transmission. Avec ces nanofibres, nous avons mis en évidence le premier ordre Stokes de l’éthanol dans le champ évanescent d’une nanofibre, ainsi que les premier et second ordres Stokes du toluène. Ces premières expériences sont en très bon accord avec nos simulations et ouvrent la voie à de nombreuses expériences en optique non linéaire. / The present PhD thesis explored nonlinear wave mixing with the strong evanescent field of nanofibers. The focus has been on the effect of stimulated Raman scattering which is activated by the interaction between such a strong evanescent field and the nonlinear liquid surrounding the nanofiber. In order to observe the stimulated Raman scattering, we investigated the nonlinear modeling to determine the needed characteristics of the nanofibers. The modal Raman gain was calculated to determine the optimal radius of nanofibers for each possible liquid. Considering the critical power and the damage threshold of our nanofibers, we found the minimum required interaction length. The condition of adiabacity of the tapers was also described. These specifications of nanofibers guide us towards the design of a proper pulling system. Several pulling systems and techniques are investigated for the fabrication of our specific nanofibers. We now are able to fabricate low loss uniform nanofibers of up to 10 cm long, a diameter down to 200 nm, with two identical low loss tapers by using our own designed translation stage pulling platform and implemented with the “variable heat brush” technique. With the achieved nanofibers, the Raman effect induced in the evanescent field was observed in both pure (ethanol) and binary mixture (toluene in ethanol) liquids. These first measurements are in good agreement with our simulation even without any fitting parameters in the modeling.
12

Estudos preliminares sobre a valorização têxtil de penas provindas da indústria da avicultura / Contribution à la caractérisation physique et mécanique de plumes en vue de leur valorisation textile / Contribution to the physical and mechanical characterization of feathers for textile valorization

Seawright Alonso, Raquel 24 March 2017 (has links)
Annuellement, l'industrie mondiale de la volaille produit des milliards de tonnes de plumes et de duvets de poule, canard, oie et dinde. Une grande partie de ces déchets sont incinérés dans des décharges polluant l'atmosphère et le sol. Il est donc crucial de développer de nouvelles idées pour des applications commerciales des bioproduits de plumes et de duvets. Ainsi, dans ce travail de thèse, les fibres de plumes et de duvets ont été caracterisées au niveau physique, mécanique, thermique et acoustique. Deux produits commerciaux ont été développés avec les plumes et les duvets : des nontissés par un processus d’aiguilletage et des nontissés de nanofibres de kératine par electrospinning. Les données ont été analysés en utilisant des méthodes statistiques pour valider les résultats. Les plumes ont pu être recyclées comme matière première pour l'industrie du textile et des matériaux. Les plumes sont facilement utilisables en raison de leur qualité, leur faible coût et les quantités disponibles. Ainsi, des plumes recyclées non seulement réduisent les coûts du produit final, mais aussi créent un mouvement écologique pour développer une économie durable. / The poultry industry produces billions tons of chicken, duck, turkey and goose feathers and down feathers worldwide annually. Most of these waste products are incinerated in landfills resulting in pollution of atmosphere and land. For these reasons, it was crucial to develop new ideas for commercial applications of feathers and downs as a fiber byproducts. In this thesis work, feathers and down as fibers were characterized in physical, mechanical, thermal and acoustic scopes and two commercial products were developed using feather and down feathers: nonwoven by dry laid needle punched process and nanofibers nonwovens of keratin by electrospinning process. The results were analyzed using statistical methods to validate the analysis. Thereby, feathers were recycled and used as a raw material for the textile and materials industry. Furthermore, they are easly usable due to their quality, low cost and the available quantity. Moreover, recycled feathers not only reduce the costs of the final product but also create an environmental movement to develop an eco-friendly circular economy.
13

Development of Flexible and Optically Transparent Composite Film with Wheat Straw Nanofibres

Wu, Nan 03 December 2012 (has links)
Cellulose is a potential source of nano-material not only because it possesses excellent mechanical and optical properties, but also because it is environmentally benign. In this study, nanofibres derived from wheat straw, an agriculture residue, was utilized in producing flexible and optically transparent nanocompostie films. The composites were produced using a bi-phase impregnation technique that coats the dried nanofibre films with clear polyurethane acrylate resins using UV radiation induced curing. The nanocomposite films thus produced possess excellent tensile properties (161MPa in strength and 9GPa in Young’s Modulus), superior thermal stability (above 300°C), low coefficient of thermal expansion (8-9ppm/K), good light transparency (80%), excellent flexibility and abrasion resistance. These nanocomposite films are aimed to replace the conventional glass substrates made in batches to a polymer based substrates that can be efficiently produced in a roll-to-roll process for the base of the future flexible flat panel displays.
14

Development of Flexible and Optically Transparent Composite Film with Wheat Straw Nanofibres

Wu, Nan 03 December 2012 (has links)
Cellulose is a potential source of nano-material not only because it possesses excellent mechanical and optical properties, but also because it is environmentally benign. In this study, nanofibres derived from wheat straw, an agriculture residue, was utilized in producing flexible and optically transparent nanocompostie films. The composites were produced using a bi-phase impregnation technique that coats the dried nanofibre films with clear polyurethane acrylate resins using UV radiation induced curing. The nanocomposite films thus produced possess excellent tensile properties (161MPa in strength and 9GPa in Young’s Modulus), superior thermal stability (above 300°C), low coefficient of thermal expansion (8-9ppm/K), good light transparency (80%), excellent flexibility and abrasion resistance. These nanocomposite films are aimed to replace the conventional glass substrates made in batches to a polymer based substrates that can be efficiently produced in a roll-to-roll process for the base of the future flexible flat panel displays.
15

A Study of the Effects of Solution and Process Parameters on the Electrospinning Process and Nanofibre Morphology

Angammana, Chitral Jayasanka 30 August 2011 (has links)
Nanofibres have been the subject of recent intensive research due to their unique properties, especially their large surface-area-to-volume ratio, which is about one thousand times higher than that of a human hair. They also have several other remarkable characteristics, such as flexibility in surface functionality, superior mechanical properties such as stiffness and tensile strength, their capacity to be formed into a variety of shapes, and the fact that they can be produced from a wide range of organic and inorganic polymers. These outstanding properties make polymer nanofibres the optimal candidates for providing significant improvement in current technology and for opening the door to novel applications in many research areas. Electrospinning is a straightforward and inexpensive process that produces continuous nanofibres from submicron diameters down to nanometre diameters. Many researchers have successfully electrospun a variety of polymer solutions into nanofibres. However, electrospinning any polymer solution directly is not straightforward or simple because of the number of parameters that influence the electrospinning process. The characteristics of the electrospun jet and the morphology of the resultant fibres are highly dependent on the properties of the polymer solution. In addition, what are favourable processing conditions for one polymer solution may not be suitable for another solution. A literature review revealed that there is no clear understanding of the behaviour of the electrospun jet and the way in which fibre morphology varies with variations in influential parameters. In addition, reported results contain significant inconsistencies and very little research has examined the effects of electrical parameters such as the electric field, the polarity of the electrode, and the conductivity and permittivity of the solution. Furthermore, no research has been conducted with respect to optimizing the electrospinning process. In this thesis, a comprehensive study was carried out by giving a special attention to the effects of electric field that have not been thoroughly investigated in the past. The electric field between the needle tip and the collector plate was altered by varying the applied voltage, distance between the needle tip and the collector plate, the inner diameter of the needle, and polarity of the voltage. Based on the experimental work, it was found that the behavior of Taylor cone, the length of the straight jet portion, and whipping jet region is highly influenced by the distribution of the electric field between the needle tip and the collector plate. Based on the stability of the Taylor cone, it was concluded that the stable operating region of the electrospun jet is a very narrow region and it is between 0.9 – 1.1kV/mm for the range of experiments that were carried out in this study. The length of the straight jet portion of the electrospun jet shows a linear relationship to the applied electric field at the tip of the fluid droplet and the whipping jet region is influenced by both the electric field at the tip of the fluid droplet and the distance between the needle and the collector plate. A confirmation were made that there must be enough distance between the needle tip and the collector plate (>200mm) to operate over the complete range of voltages without affecting drying of nanofibres. It was also concluded that the morphology and diameter of the collected nanofibres depend significantly on both the length of the straight jet portion and size of the whipping region. The effects of polarity of the applied voltage on the electrospinning process and nanofibre morphology were investigated using the positive, negative, and AC voltages. However, it was found that the electrospinning can not be achieved with the application of 60Hz AC voltage. It was observed that the behavior of Taylor cone, the straight jet portion, and the whipping jet region depend on the polarity of the applied voltage. During the study, it was accomplished that the reason for this different behavior is the disparity of ionization in the polymer solution with the application of positive and negative high voltages. In this thesis, the effects of multi-needle arrangements on the electrospinning process and fibre morphology were also explained. Finite element method (FEM) simulation results revealed that the local electric field strength around each needle tip weakens significantly in the case of multi-needle schemes due to the mutual influence of other needles in the arrangement compared to the single-needle system. The spacing between the needles was varied, and the effects of the needle spacing were examined. The experimental and simulation results were concealed the correlation between the degree of field distortion and the variation in the measured vertical angle of the straight jet portion for different needle spacing. It was concluded that the local field deterioration at the needle tips in multi-needle schemes degrades the electrospinning process significantly and produces considerable variation in the fibre morphology even though the influence of needle spacing on the average jet current and the fibre diameter are not very significant. In this work, the effects of conductivity and ionic carriers on the process of electrospinning and hence on the morphology of nanofibres were studied using polyethylene oxide (PEO) and polyacrylic acid (PAA) aqueous solutions. Different salts including lithium chloride (LiCl), sodium chloride (NaCl), sodium fluoride (NaF), sodium bicarbonate (NaHCO3), potassium chloride (KCl), and cesium chloride (CsCl) were added in different concentrations to the polymer solutions for introducing different ionic carriers into the solution. The results showed that the average fiber diameter decreases with increase in the conductivity of the solution. In addition, it was discovered that the formation of Taylor cone highly depends on the conductivity in the polymer solution. Formation of multi-jets at the fluid droplet when the conductivity of the polymer solution is increased during the electrospinning was also observed. These behaviors were completely explained using the distribution of the surface charge around the electrospun jet and the variation in the tangential electric field along the surface of the fluid droplet. The stretching of the polymer jet can be related to the amount of ionic carries and the size and mobility of positive and negative ions. The increasing amount of ionic carriers and smaller size positive ions enhance the stretching of the electrospun jet. In contrast, the lesser diameter negative ions decrease the stretching of the electrospun jet. The morphology of electrospun nanofibres can also be varied by altering the type of ionic carriers. A charge modifier, which is a container that is used to hold a solvent surrounding the needle tip during the electrospinning, was introduced to facilitate the electrospinning of insulating and high conductivity polymer solutions. The co-axial flow of the filled solvent on the outer surface of the polymer solution helps to induce enough surface charges during electrospinning and it also keeps the electric field tangential to the fluid surface during the process. Therefore, the introduction of charge modifier greatly enhanced the electrospinning behavior of highly insulating and conductive polymer solutions and liquids. The developed charge modifier method was verified by using sodium alginate which is a biopolymer that cannot electrospin alone due to its high electrical conductivity and silicone rubber which is an insulating liquid polymer at room temperature. One of the most commonly used theoretical model of the electrospinning process was modified to incorporate the non-uniform characteristics of the electric field at the tip of the needle. The non-uniform electric field between the needle tip (spinneret) and the collector plate was calculated based on the charge simulation technique (CST). It gives a better representation of the true electrospinning environment compared to the uniform field calculation in the existing model. In addition, a localized approximation was used to calculate the bending electric force acting on the electrospinning jet segments. It was also introduced a constant velocity to initiate the electrospinning jet during simulation. The incorporated modifications gave better results that closely match with the real electrospinning jet. The modified electrospinning model was used to understand the effects of parameters on the electrospinning process and fibre morphology.
16

Diffusion Raman stimulée dans le champ évanescent de nanofibres

Shan, Liye 19 December 2012 (has links) (PDF)
Cette thèse porte sur les mélanges d'onde non linéaires qui peuvent avoir lieu dans le champ évanescent de nanofibres de silice. Nous nous sommes plus particulièrement intéressés à la diffusion Raman stimulée qui est obtenue par l'interaction du champ évanescent très intense et un liquide non linéaire dans lequel baigne la nanofibre. Afin de mettre en évidence la diffusion Raman stimulée" évanescente ", nous avons développé un modèle de simulation non linéaire dont le but est de déterminer les caractéristiques des nanofibres à réaliser. Le gain Raman modal est calculé afin de trouver le rayon optimal des nanofibres pour chaque liquide ou mélange de liquides possible. En considérant la puissance critique et le seuil de dommage de nos nanofibres, nous avons déduit la longueur minimale d'interaction. Les conditions d'adiabacité des parties évasées menant à la nanofibre sont également discutées. Ces spécifications nous ont amenés à développer une plateforme de tirage de nanofibres spécifiquement dédiée à ces expériences de non-linéarités évanescentes. Cette palteforme nous permet de tirer des nanofibres de diamètre allant jusqu'à 200 nm sur des longueurs de 10 cm, avec plus de 90% de transmission. Avec ces nanofibres, nous avons mis en évidence le premier ordre Stokes de l'éthanol dans le champ évanescent d'une nanofibre, ainsi que les premier et second ordres Stokes du toluène. Ces premières expériences sont en très bon accord avec nos simulations et ouvrent la voie à de nombreuses expériences en optique non linéaire.
17

Synthèse de nanotubes de carbone pour l'obtention de vias d'interconnexions électriques et de drains thermiques.

Mbitsi, Hermane 16 December 2010 (has links) (PDF)
Les travaux de recherche de ce manuscrit s'inscrivent dans le cadre d'une coopération scientifique avec la société STMicroelectronics de Tours concernant les interconnexions des prochaines générations de circuits intégrés. L'intégration de nanotubes de carbone comme connecteurs en microélectronique de puissance, limiterait sévèrement les effets d'échauffements dans les empilements de puces, permettant une meilleure dissipation de la chaleur. Ce travail de thèse avait pour objectif de déterminer un procédé de croissance reproductible de nanotubes de carbone d'au moins 20 dm de long, en tapis perpendiculaire au substrat, peu pollué par du carbone amorphe afin de réaliser un véhicule test permettant de mesurer les propriétés thermiques et électriques du tapis de nanotubes obtenu. Le dispositif expérimental présenté utilise l'ablation laser pour le dépôt de catalyseur (fer) la méthode de CVD assistée par plasma radiofréquence d'éthylène et d'hydrogène pour la croissance de nanotubes de carbone. Des conditions optimales d'obtention des tapis répondant aux critères de réalisation des démonstrateurs, ont été définies à la suite d'une étude paramétrée. Pour les mesures électriques, des plots d'or servant d'électrodes, sont déposés sur les tapis de nanotubes. Lors des tests électriques 4 pointes sur le démonstrateur réalisé, le comportement ohmique des tapis de nanotubes a été mis en évidence. Une puissance de 300 mW/mm2 est déposée sur les plots sans aucun dommage pour les nanotubes, et une résistivité de l'ordre de 10-3 L.m a été estimée. Pour les tests thermiques, une couche mince de titane absorbant l'énergie d'un faisceau laser UV pulsé représentant la source de chaleur, est déposée sur le tapis de nanotubes. Des valeurs de conductivité thermique apparente de 200 - 300 W/m/K et intrinsèque de 660W/m/K ont été déterminées par méthode de pyrométrie infrarouge résolue en temps.
18

The Influence of the Physical Environment on Annulus Fibrosus Cells Cultured on Oriented Nanofibrous Polyurethane Scaffolds

Turner, Kathleen Grace 25 August 2011 (has links)
Tissue engineering the annulus fibrosus (AF) for use in a functional intervertebral disc replacement is a promising alternative to current treatments of degenerative disc disease. Polycarbonate urethane (PU) scaffolds have demonstrated the ability to support AF cell attachment and matrix synthesis and are suitable for tissue engineering the AF. The present study investigates the effects of the physical and biochemical environment on AF cells grown on aligned nanofibrous PU scaffolds. First, the effect of dynamic spinner flask culture and fibronectin pre-coating on tissue formation was analyzed and then the role of scaffold fibre tension on annulus fibrosus cells was examined using a tailored culture system. The results of these studies demonstrated that AF cells are sensitive to differences in biochemical cues at the scaffold surface and their physical environment and respond by altering their cellular responses and, potentially by manipulating their microenvironments, including the physical characteristics of the PU-ADO scaffolds.
19

The Influence of the Physical Environment on Annulus Fibrosus Cells Cultured on Oriented Nanofibrous Polyurethane Scaffolds

Turner, Kathleen Grace 25 August 2011 (has links)
Tissue engineering the annulus fibrosus (AF) for use in a functional intervertebral disc replacement is a promising alternative to current treatments of degenerative disc disease. Polycarbonate urethane (PU) scaffolds have demonstrated the ability to support AF cell attachment and matrix synthesis and are suitable for tissue engineering the AF. The present study investigates the effects of the physical and biochemical environment on AF cells grown on aligned nanofibrous PU scaffolds. First, the effect of dynamic spinner flask culture and fibronectin pre-coating on tissue formation was analyzed and then the role of scaffold fibre tension on annulus fibrosus cells was examined using a tailored culture system. The results of these studies demonstrated that AF cells are sensitive to differences in biochemical cues at the scaffold surface and their physical environment and respond by altering their cellular responses and, potentially by manipulating their microenvironments, including the physical characteristics of the PU-ADO scaffolds.
20

A Study of the Effects of Solution and Process Parameters on the Electrospinning Process and Nanofibre Morphology

Angammana, Chitral Jayasanka 30 August 2011 (has links)
Nanofibres have been the subject of recent intensive research due to their unique properties, especially their large surface-area-to-volume ratio, which is about one thousand times higher than that of a human hair. They also have several other remarkable characteristics, such as flexibility in surface functionality, superior mechanical properties such as stiffness and tensile strength, their capacity to be formed into a variety of shapes, and the fact that they can be produced from a wide range of organic and inorganic polymers. These outstanding properties make polymer nanofibres the optimal candidates for providing significant improvement in current technology and for opening the door to novel applications in many research areas. Electrospinning is a straightforward and inexpensive process that produces continuous nanofibres from submicron diameters down to nanometre diameters. Many researchers have successfully electrospun a variety of polymer solutions into nanofibres. However, electrospinning any polymer solution directly is not straightforward or simple because of the number of parameters that influence the electrospinning process. The characteristics of the electrospun jet and the morphology of the resultant fibres are highly dependent on the properties of the polymer solution. In addition, what are favourable processing conditions for one polymer solution may not be suitable for another solution. A literature review revealed that there is no clear understanding of the behaviour of the electrospun jet and the way in which fibre morphology varies with variations in influential parameters. In addition, reported results contain significant inconsistencies and very little research has examined the effects of electrical parameters such as the electric field, the polarity of the electrode, and the conductivity and permittivity of the solution. Furthermore, no research has been conducted with respect to optimizing the electrospinning process. In this thesis, a comprehensive study was carried out by giving a special attention to the effects of electric field that have not been thoroughly investigated in the past. The electric field between the needle tip and the collector plate was altered by varying the applied voltage, distance between the needle tip and the collector plate, the inner diameter of the needle, and polarity of the voltage. Based on the experimental work, it was found that the behavior of Taylor cone, the length of the straight jet portion, and whipping jet region is highly influenced by the distribution of the electric field between the needle tip and the collector plate. Based on the stability of the Taylor cone, it was concluded that the stable operating region of the electrospun jet is a very narrow region and it is between 0.9 – 1.1kV/mm for the range of experiments that were carried out in this study. The length of the straight jet portion of the electrospun jet shows a linear relationship to the applied electric field at the tip of the fluid droplet and the whipping jet region is influenced by both the electric field at the tip of the fluid droplet and the distance between the needle and the collector plate. A confirmation were made that there must be enough distance between the needle tip and the collector plate (>200mm) to operate over the complete range of voltages without affecting drying of nanofibres. It was also concluded that the morphology and diameter of the collected nanofibres depend significantly on both the length of the straight jet portion and size of the whipping region. The effects of polarity of the applied voltage on the electrospinning process and nanofibre morphology were investigated using the positive, negative, and AC voltages. However, it was found that the electrospinning can not be achieved with the application of 60Hz AC voltage. It was observed that the behavior of Taylor cone, the straight jet portion, and the whipping jet region depend on the polarity of the applied voltage. During the study, it was accomplished that the reason for this different behavior is the disparity of ionization in the polymer solution with the application of positive and negative high voltages. In this thesis, the effects of multi-needle arrangements on the electrospinning process and fibre morphology were also explained. Finite element method (FEM) simulation results revealed that the local electric field strength around each needle tip weakens significantly in the case of multi-needle schemes due to the mutual influence of other needles in the arrangement compared to the single-needle system. The spacing between the needles was varied, and the effects of the needle spacing were examined. The experimental and simulation results were concealed the correlation between the degree of field distortion and the variation in the measured vertical angle of the straight jet portion for different needle spacing. It was concluded that the local field deterioration at the needle tips in multi-needle schemes degrades the electrospinning process significantly and produces considerable variation in the fibre morphology even though the influence of needle spacing on the average jet current and the fibre diameter are not very significant. In this work, the effects of conductivity and ionic carriers on the process of electrospinning and hence on the morphology of nanofibres were studied using polyethylene oxide (PEO) and polyacrylic acid (PAA) aqueous solutions. Different salts including lithium chloride (LiCl), sodium chloride (NaCl), sodium fluoride (NaF), sodium bicarbonate (NaHCO3), potassium chloride (KCl), and cesium chloride (CsCl) were added in different concentrations to the polymer solutions for introducing different ionic carriers into the solution. The results showed that the average fiber diameter decreases with increase in the conductivity of the solution. In addition, it was discovered that the formation of Taylor cone highly depends on the conductivity in the polymer solution. Formation of multi-jets at the fluid droplet when the conductivity of the polymer solution is increased during the electrospinning was also observed. These behaviors were completely explained using the distribution of the surface charge around the electrospun jet and the variation in the tangential electric field along the surface of the fluid droplet. The stretching of the polymer jet can be related to the amount of ionic carries and the size and mobility of positive and negative ions. The increasing amount of ionic carriers and smaller size positive ions enhance the stretching of the electrospun jet. In contrast, the lesser diameter negative ions decrease the stretching of the electrospun jet. The morphology of electrospun nanofibres can also be varied by altering the type of ionic carriers. A charge modifier, which is a container that is used to hold a solvent surrounding the needle tip during the electrospinning, was introduced to facilitate the electrospinning of insulating and high conductivity polymer solutions. The co-axial flow of the filled solvent on the outer surface of the polymer solution helps to induce enough surface charges during electrospinning and it also keeps the electric field tangential to the fluid surface during the process. Therefore, the introduction of charge modifier greatly enhanced the electrospinning behavior of highly insulating and conductive polymer solutions and liquids. The developed charge modifier method was verified by using sodium alginate which is a biopolymer that cannot electrospin alone due to its high electrical conductivity and silicone rubber which is an insulating liquid polymer at room temperature. One of the most commonly used theoretical model of the electrospinning process was modified to incorporate the non-uniform characteristics of the electric field at the tip of the needle. The non-uniform electric field between the needle tip (spinneret) and the collector plate was calculated based on the charge simulation technique (CST). It gives a better representation of the true electrospinning environment compared to the uniform field calculation in the existing model. In addition, a localized approximation was used to calculate the bending electric force acting on the electrospinning jet segments. It was also introduced a constant velocity to initiate the electrospinning jet during simulation. The incorporated modifications gave better results that closely match with the real electrospinning jet. The modified electrospinning model was used to understand the effects of parameters on the electrospinning process and fibre morphology.

Page generated in 0.0579 seconds