• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 5
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 33
  • 10
  • 10
  • 8
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Coupling 1D atom arrays to an optical nanofiber : Demonstration of an efficient Bragg atomic mirror / Couplage de réseaux d'atomes 1D à une nanofibre optique : Démonstration d'un miroir atomique efficace de Bragg

Chandra, Aveek 21 November 2017 (has links)
Le couplage de guides d'ondes nanoscopiques et d'atomes froids a récemment ouvert de nouvelles voies de recherche. Le guide d'onde dans notre cas est une nanofibre qui confine la lumière transversalement à une échelle inférieure à la longueur d'onde. La lumière guidée présente un fort champ évanescent permettant une interaction atome-photon exaltée au voisinage de la nanofibre. Dans notre expérience, un nuage atomique froid est d'abord superposé à une nanofibre optique. Puis, en utilisant un piège dipolaire via le champ évanescent de la nanofibre, les atomes froids sont piégés à proximité de sa surface. Avec cette plateforme, nous avons obtenu des épaisseurs optiques élevées OD ~ 100 et de longues durées de vie ~ 25 ms en utilisant un schéma de piégeage qui préserve les propriétés internes des atomes. Une direction intéressante est alors d'explorer les effets collectifs résultant de l'ordre spatial des atomes. Lorsque la période du réseau est proche de la longueur d'onde de résonance, une réflexion de Bragg aussi élevée que 75% est observée. Cette réflexion dépend de la polarisation de la sonde par rapport aux réseaux atomiques - une signature de la chiralité dans les systèmes à guide d'ondes nanoscopiques. La possibilité de contrôler le transport de photons dans les guides d'ondes couplés à des systèmes de spin permettrait de nouvelles fonctionnalités pour les réseaux quantiques et l'étude d'effets collectifs résultant d'interactions à longue distance. / The coupling of cold atoms to 1D nanoscale waveguides have opened new avenues of research. The waveguide in our case is a nanofiber, which confines light transversally to a subwavelength scale. The guided light exhibits a strong evanescent field allowing enhanced atom-photon interaction in the vicinity of nanofiber. In our experiment, a cold atomic cloud is first interfaced with an optical nanofiber. By using an optical lattice in the evanescent field, the atoms are then trapped in 1D atomic arrays close to the nanofiber. In this platform, we reach high optical depth OD ~ 100 and long lifetimes ~ 25 ms by using a dual-color compensated trapping scheme that preserves the internal properties of atoms. In this thesis, we explore collective effects emerging from the spatial ordering of atoms. When the period of the lattice is made close to commensurate with the resonant wavelength, Bragg reflection, as high as 75%, is observed. The reflection shows dependency on orientation of the probe polarization relative to the atomic arrays - a chiral signature in nanoscale waveguide-QED systems. The ability to control photon transport in 1D waveguides coupled to spin systems would enable novel quantum networking capabilities and the study of many-body effects arising from long-range interactions.
22

Functionalisation of electrospun nanofibre for lanthanide ion adsorption from aqueous solution

Pereao, Omoniyi Kolawole January 2018 (has links)
Philosophiae Doctor - PhD (Chemistry) / Rare earth elements (REEs) have widespread use and importance for industrial applications due to their metallurgical, optical and electronic properties. Several typical hydrometallurgical techniques such as adsorption, chemical precipitation, filtration, ion exchange and solvent extraction techniques have been used for separation and recovery of the rare earth metals from aqueous solutions. Adsorption was recognised as one of the most promising methods due to its simplicity, high efficiency and availability. Many adsorbents are being investigated but there are few adsorbents containing specific functional groups in practical use for REEs recovery. This aim of this study was to develop a nanofibre based adsorbent containing glycolic acid functional groups for the recovery of rare earth metals. Polystyrene (PS) and polyethylene terephthalate (PET) nanofibres were prepared by the electrospinning technique, glycolic acid functional groups were grafted onto the PS or PET nanofibres and the potential of the two modified nanofibre adsorbents for adsorption of Ce3+ or Nd3+ from aqueous solution were investigated and compared. The adsorption experiments were carried out to investigate the effect of different adsorption parameters such as pH, contact time and initial concentration in a batch system in order to achieve the objectives of this research.
23

Optical nanofibers interfacing cold toms. A tool for quantum optics / Des nanofibres optiques comme interface entre lumière guidée et atomes froids. Un outil pour l'optique quantique

Gouraud, Baptiste 11 February 2016 (has links)
Cette thèse a consisté à mettre en place une nouvelle expérience utilisant des atomes froids en interaction avec la lumière guidée par une nanofibre optique. Nous avons tout d'abord développé un banc de fabrication de nanofibres. En chauffant et étirant une fibre optique commerciale, on obtient un cylindre de silice de 400 nm de diamètre. La lumière guidée dans ces nanofibres est fortement focalisée sur toute la longueur de la fibre et exhibe de forts champs évanescents, ce qui permet d'obtenir une grande profondeur optique avec un faible nombre d'atomes. Après avoir inséré une nanofibre au milieu d'un nuage d'atomes, nous avons observé le phénomène de lumière lente dans les conditions de transparence électromagnétiquement induite. Nous avons aussi stoppé la lumière guidée et mémorisé l'information qu'elle contenait. Nous avons montré que ce protocole de mémoire optique fonctionne pour des impulsions lumineuses contenant moins d'un photon en moyenne. Ce système pourra donc être utilisé comme une mémoire quantique, un outil essentiel pour les futurs réseaux de communication quantique. Enfin, nous avons piégé les atomes dans un réseau optique au voisinage de la nanofibre grâce à de la lumière guidée par celle-ci. Par rapport à notre première série d'expériences, le nuage ainsi obtenu a un temps de vie plus long (25 ms) et interagit plus fortement avec la lumière guidée (OD ~ 100). Ce nouveau système devrait permettre d'implémenter efficacement d'autres protocoles d'optique quantique, comme la génération de photons uniques et l'intrication de deux ensembles atomiques distants. / We built a new experiment using cold atoms interacting with the light guided by an optical nanofiber. We first developed a nanofiber manufacturing bench. By heating and stretching a commercial optical fiber, a silica cylinder of 400 nm diameter is obtained. The light guided in these nanofibers is strongly focused over the whole length and exhibits strong evanescent fields. We then prepared a vacuum chamber and the laser system necessary for the manipulation of cold atoms. After inserting a nanofiber amid a cloud of cold atoms, we observed the phenomenon of slow light under the conditions of electromagnetically induced transparency: the light guided by the fiber is slowed down to a speed 3000 times smaller than its usual speed. We also stored the light guided by an optical fiber. After several microseconds, the information stored as a collective atomic excitation could be retrieved in the fiber. We have shown that this optical memory works for light pulses containing less than one photon on average. This system may therefore be used as a quantum memory, an essential tool for future quantum communication networks. Finally, we trapped atoms in an array in the vicinity of the nanofiber thanks to the light guided by the latter. Compared to our first set of experiments, the resulting cloud has a longer lifetime (25 ms) and interacts more strongly with the guided light (OD ~ 100). This new system should allow to efficiently implement other quantum optics protocols, such as the generation of single photons, or the entanglement of two remote atomic ensembles.
24

Designing nanostructured peptide hydrogels containing graphene oxide and its derivatives for tissue engineering and biomedical applications

Wychowaniec, Jacek January 2018 (has links)
Progress in biomedicine requires the design of functional biomaterials, in particular, 3-dimensional (3D) scaffolds. Shear thinning, β-sheet based peptide hydrogels have attracted wide interest due to their potential use in tissue engineering and biomedical applications as 3D functional scaffolds. The emergence of carbon nanomaterials has also opened the door for the construction of increasingly functional hybrid hydrogels built from nanofibres and graphene-based materials using non-covalent physical interactions. The relationship between peptide molecular structure and the formed hydrogel is important for understanding the material response to shear. In particular, the physicochemical properties of peptide based biomaterials will affect the feasibility of injecting them during medical procedures. In the first part of this work, four peptides: FEFKFEFK (F8), FKFEFKFK (FK), KFEFKFEFK (KF8) and KFEFKFEFKK (KF8K) (F - phenylalanine, E - glutamic acid, K - lysine) were designed and used at identical charge to explore the effect of lysine rich β-sheet self-assembling sequences on the shear thinning behaviour and final properties of bulk hydrogels. By varying the peptide sequence design and concentration of the peptide, the tendency of the nanofibres formed to aggregate and the balance of nanofibre junction strength versus fibre cohesive strength could be explored. This allowed the existing theory of the shear thinning behaviour of this class of materials to be extended. The relationship between molecular structures of nanofibres forming the 3D network and the nano-filler is critical to understand in order to design tuneable and functional materials. In the next part of the work, three rationally designed β-sheet peptides, which form hydrogels: VEVKVEVK (V8), FEFKFEFK (F8) and FEFEFKFE (FE) (V - valine) and five graphene-based materials: graphene oxide (GO), reduced graphene oxide (rGO), three graphene-polymer hybrid flakes: GO with polydiallyldimethylammonium chloride (GO/PDADMAC), rGO with PDADMAC (rGO/PDADMAC) and rGO with polyvinylpyrrolidone (rGO/PVP) were used to form a selection of hybrid hydrogels. Graphene derivatives of the lateral flake sizes of 16.8 ± 10.1 µm were used. Various interactions between the graphene flakes and the peptides were observed that affected the overall mechanical properties of the hydrogels. Electrostatic interactions and pie-pie stacking, when phenylalanine residues are present, were shown to play a key role in determining the dispersion of graphene materials in the peptide hydrogels and stiffness of the hybrid materials. In particular, FE with reduced graphene oxide (rGO) and FE with rGO covered with polydiallyldimethylammonium chloride (PDADMAC) thin film formed double network-like hybrid hydrogels due to strong formation of peptide nanofibrillar bridges between adjacent rGO flakes. This corresponded to the 3- and 4-fold increase in the storage modulus (Gꞌ) of these hydrogels in comparison to controls. FE hydrogels with homogeneus dispersions of graphene oxide (GO) and reduced graphene oxide (rGO) are further shown to be suitable for 3D culture of human mesenchymal stem cells (hMSCs) with no cytotoxicity. These results focus attention on the importance of understanding interactions between the nano-filler and the nanofibrillar network in forming hybrid hydrogels with tuneable mechanical and biological properties, and demonstrates the possibility of using these materials as 3D cell culture scaffolds for biomedical purposes. Furthermore, graphene oxide (GO) itself is currently used in a number of processes of technological relevance such as wet spinning, injection moulding or inkjet printing to form graphene fibres, composites and printed conductors. Typically, such processes utilise well-aligned layered GO liquid crystal (LC) structures in aqueous dispersions. Flow and confinement encountered during processing affects the alignment and stability of this phase. In the final part of this work, the alignment of GOLCs of two lateral flake sizes (42.1 ± 29.4 µm and 15.5 ± 7.5 µm) were probed under a wide range of rotational shear flow conditions that overlap with the manufacturing processes defined by angular speeds from 0.08 to 8 rad.s-1 (and corresponding maximum shear rates from 0.1 s-1 to 100 s-1), in real-time, using shear induced polarized light imaging and small angle X-ray scattering, both coupled with an in-situ rheometer (Rheo-SIPLI and Rheo-SAXS, respectively). Under certain conditions, a unique pattern in Rheo-SIPLI: a Maltese cross combined with shear banding was observed. This phenomenon is unique to GO flakes of sufficiently large lateral size. The structure formed is attributed to a helical flow arising from a combination of shear flow and Taylor-vortex type flow, which is reinforced by a mathematical model. The orientations prescribed by this model are consistent with anomalous rheopecty oberved in Rheo-SIPLI and an anomolous scattering pattern in Rheo-SAXS. With the current trend towards producing ultra-large GO flakes, evidence that the flow behaviour changes from a Couette flow to a Taylor vortex flow was provided, which would lead to undesired, or alternatively, controllable alignment of GO flakes for a variety of applications, including aligned structures for biomedical purposes.
25

A comparison of SPS  and HP sintered, electroless copper plated carbon nanofibre composites for heat sink applications

Ullbrand, Jennifer January 2009 (has links)
<p>The aim of this study is to synthesize a material with high thermal conductivity and a low coefficient of thermal expansion (CTE), useful as a heat sink. Carbon nanofibres (CNF) are first coated with copper by an electroless plating technique and then sintered to a solid sample by either spark plasma sintering (SPS) or hot pressing (HP). The final product is a carbon nanofibre reinforced copper composite. Two different fibre structures are considered: platlet (PL) and herringbone (HB). The influence of the amount of CNF reinforcement (6-24 %wt), on the thermal conductivity and CTE is studied. CNF has an excellent thermal conductivity in the direction along the fibre while it is poor in the transverse direction. The CTE is close to zero in the temperature range of interest. The adhesion of Cu to the CNF surface is in general poor and thus improving the the wetting of the copper by surface modifications of the fibres are of interest such that thermal gaps in the microstructure can be avoided. The poor wetting results in CNF agglomerates, resulting in an inhomogeneous microstructure. In this report a combination of three different types of surface modifications has been tested: (1) electroless deposition of copper was used to improve Cu impregnation of CNF; (2) heat treatment of CNF to improve wetting; and (3) introduction of a Cr buffer layer to further enhance wetting. The obtained composite microstructures are characterized in terms of chemical composition, grain size and degree of agglomeration. In addition their densities are also reported. The thermal properties were evaluated in terms of thermal diffusivity, thermal conductivity and CTE. Cr/Cu coated platelet fibres (6wt% of CNF reinforcement) sintered by SPS is the sample with the highest thermal conductivity, ~200 W/Km. The thermal conductivity is found to decrease with increasing content of CNFs.</p>
26

ELABORATION D'ELECTRODES DE PILES A COMBUSTIBLE PAR PLASMA

Caillard, Amaël 05 December 2006 (has links) (PDF)
Cette thèse en cotutelle résulte de la collaboration entre le laboratoire français GREMI (Orléans) et le groupe australien SP3 (Université National Australienne) sur l'optimisation des piles à combustible par procédé plasma. Mon projet d'étude concerne le développement d'une électrode de pile à combustible constituée d'une nanostructure carbonée imprégnée d'agrégats de catalyseur platine, l'enjeu étant de réduire la quantité de platine tout en conservant de bonnes performances électrochimiques. Durant la première partie passée en France, des électrodes traditionnelles non catalysées ont été imprégnées d'agrégats de platine sur quelques centaines de nanomètres par pulvérisation plasma. Cette méthode a permis de réduire considérablement la charge de platine par rapport à une électrode traditionnelle catalysée chimiquement tout en réduisant légèrement ses performances. La seconde moitié de ma thèse en Australie concerna la croissance d'un support catalytique carboné de grande surface spécifique optimisé pour l'application pile à combustible. Des nanofibres de carbone (CNF) ont donc été déposées sur du papier de carbone recouvert d'une fine couche de nickel en utilisant un procédé CVD (Chemical Vapor Deposition) dans un réacteur plasma Helicon que j'ai conçu et développé. La morphologie des CNF a été caractérisée et optimisée en fonction des paramètres plasmas. Ce tapis de CNF a été imprégné d'agrégats de platine par pulvérisation plasma Helicon. Dans cette nouvelle électrode entièrement réalisée par plasma, le catalyseur dispersé est cette fois réparti sur quelques micromètres ce qui permettra d'augmenter les performances électriques de la pile.
27

A comparison of SPS  and HP sintered, electroless copper plated carbon nanofibre composites for heat sink applications

Ullbrand, Jennifer January 2009 (has links)
The aim of this study is to synthesize a material with high thermal conductivity and a low coefficient of thermal expansion (CTE), useful as a heat sink. Carbon nanofibres (CNF) are first coated with copper by an electroless plating technique and then sintered to a solid sample by either spark plasma sintering (SPS) or hot pressing (HP). The final product is a carbon nanofibre reinforced copper composite. Two different fibre structures are considered: platlet (PL) and herringbone (HB). The influence of the amount of CNF reinforcement (6-24 %wt), on the thermal conductivity and CTE is studied. CNF has an excellent thermal conductivity in the direction along the fibre while it is poor in the transverse direction. The CTE is close to zero in the temperature range of interest. The adhesion of Cu to the CNF surface is in general poor and thus improving the the wetting of the copper by surface modifications of the fibres are of interest such that thermal gaps in the microstructure can be avoided. The poor wetting results in CNF agglomerates, resulting in an inhomogeneous microstructure. In this report a combination of three different types of surface modifications has been tested: (1) electroless deposition of copper was used to improve Cu impregnation of CNF; (2) heat treatment of CNF to improve wetting; and (3) introduction of a Cr buffer layer to further enhance wetting. The obtained composite microstructures are characterized in terms of chemical composition, grain size and degree of agglomeration. In addition their densities are also reported. The thermal properties were evaluated in terms of thermal diffusivity, thermal conductivity and CTE. Cr/Cu coated platelet fibres (6wt% of CNF reinforcement) sintered by SPS is the sample with the highest thermal conductivity, ~200 W/Km. The thermal conductivity is found to decrease with increasing content of CNFs.
28

Carbon-Based Nanomaterials as an Anode for Lithium Ion Battery

Yao, Fei, Cojocaru, Costel Sorin 26 June 2013 (has links) (PDF)
Dans ce travail de thèse, nous avons exploré l'utilisation des nanomatériaux à base de carbone comme anode pour les batteries lithium-ion. Par rapport aux matériaux d'anode classiques qui sont de type carbone graphitique a des tailles de grains de l'ordre du micromètre, les matériaux de carbone de taille nanométrique présentent un grand potentiel non seulement pour l'application pratique en tant que matériau d'anode, mais aussi du point de vue de la science fondamentale car permettent l'exploration fine des phénomènes de diffusion des ions lithium. Dans le cadre de l'application pratique, nous avons exploré les nanofibres unidimensionnelles de carbone (CNF) en tant que matériau d'anode. Cette structure d'anode comporte un substrat métallique comme collecteur de courant mais n'avons pas utilisé des liants ce qui bénéficie a la stabilité à long terme. Pourtant, la densité d'énergie que nous avons obtenu était encore limitée à 370 mAh /g similaire à celle du carbone conventionnel. Afin d'améliorer la capacité des nanofibres de carbone bruts, nous les avons recouverts de silicium (par dépôt électrochimique), un matériau d'insertion de lithium avec une bien plus importante capacité de stockage. Le tapis hybrides Si / CNF ont permis d'améliorer nettement la capacité des matériaux de carbone jusqu'à deux fois de plus pour la plupart des cas. Du point de vue des études fondamentales, le graphène matériau bidimensionnel, a été synthétisé par dépôt chimique en phase vapeur (CVD) et utilisé comme un support pour mettre en évidence les chemins de diffusion des ions lithium. Par rapport à du graphite classique qui contient à la fois les deux plans de type basal et prismatique, seulement un plan basal bien défini et d'une grande surface spécifique peut être réalisé dans le cas du graphène. Nous avons découvert que la réaction électrochimique a l'électrode (substrat / graphène) est non seulement liée au nombre de couches de graphène mais s'appuie également sur la présence de défauts dans le plan de graphène. Combinant les résultats expérimentaux et les calculs de théoriques, nous avons pu prouver que le plan basal empêche la diffusion des ions de lithium avec une hauteur de barrière de diffusion élevé, alors que les divacancies et les défauts d'ordre supérieur peuvent constituer des raccourcis pour la diffusion des ions de lithium.
29

Synthèse et caractérisation de nouvelles nanostructures à base d’oxyde et de carbure de Fe / Synthesis and characterization of new nanostructures based on oxide and iron carbide

Eid, Cynthia Joseph 30 September 2010 (has links)
Comme les propriétés physiques d'un matériau à l’échelle nanométrique sont largement dépendantes de la taille et de la forme des nanostructures, il est inutile de synthétiser de nouvelles compositions et morphologies. L’étude avancée de leur structure par les techniques de caractérisation usuelles (MET, MEB, DRX, Raman…) permettra de collecter toutes les informations nécessaires à la compréhension de leurs propriétés physiques (magnétiques, optiques, électriques). Dans ce manuscrit, nous décrirons plusieurs approches d’élaboration de nanostructures 0D, 1D et 2D multifonctionnelles afin de mieux connaître les paramètres qui contrôlent leur composition chimique et leur structure. De plus, ce travail de recherche a abouti à la synthèse de nouveaux matériaux à base d’oxyde et de carbure de fer. Des nanofibres magnétiques ayant des morphologies originales « Ruban » et « tube » ont été élaborées par la technique d’électrospinning en modifiant plusieurs paramètres expérimentaux : concentration de la solution, atmosphères de traitement thermique, température de recuit… De plus, des couches minces guidantes dopées par des nanostructures magnétiques ont été préparées par la technique dip-coating. Nous avons mené une étude complexe et détaillée sur les propriétés structurales de ces matériaux afin de définir les paramètres expérimentaux qui permettront d’obtenir des nano objets de bonne qualité. Dans un but ultime, nous souhaiterons explorer les possibilités d’application de ces matériaux qui présentent à la fois des caractéristiques électriques et magnétiques. / The physical properties of a nanomaterial strongly depend on the size and the shape of the nanostructure. As a consequence, it is interesting to elaborate new materials with different compositions and morphologies. The advanced study on the structure using common characterization techniques (TEM, MEB, XRD, Raman…) allows us to collect all the important information on their physical properties (magnetic, optical and electrical properties). In this thesis, we describe multiple ways to elaborate multifunctional nanostructures with 0D, 1D and 2D in order to study the parameters that control their chemical composition and structure. Besides, this research lead to the elaboration of new nanomaterials based on the oxide and the carbide forms of iron. Magnetic nanofibers with different morphologies (belts, tubes) were prepared using the electrospinning technique while controlling several experimental parameters : solution concentration, pyrolysis atmosphere, thermal treatment temperature… Moreover, thin layers doped with magnetic nanostructures were deposited on a pyrex substrate using the dip-coating technique. A full and detailed study on their structural properties was performed in order to reach the experimental parameters that allow us to obtain high quality products. Finally, we wish to explore the possible applications of these materials that present interesting electrical and magnetic characteristics.
30

Auto-assemblage de protéines pour la bioélectronique : étude du tranport de charges dans les fibres amyloïdes / Protein self-assembly for bioelectronics : study of charges transport in amyloid fibers

Rongier, Anaëlle 13 February 2018 (has links)
Les fibres amyloïdes sont des biomatériaux prometteurs pour la bioélectronique, en particulier pour l’interfaçage avec les systèmes biologiques. Ces fibres, formées par l’auto-assemblage de protéines, sont aisément synthétisables et modifiables/fonctionnalisables. Elles possèdent de surcroît des propriétés physiques remarquables notamment en termes de stabilité et de résistance mécanique. Nous avons étudié les mécanismes de conductions de charges dans les fibres formées par la protéine HET-s(218-289), seules fibres amyloïdes dont la structure atomique soit connue. Les échantillons ont été caractérisés électriquement et électrochimiquement sous la forme de films « secs ». L’influence de plusieurs paramètres sur la conductivité, entre autres la température, l’humidité ou encore la lumière, a été investiguée. Nous avons montré que l’organisation de la protéine en fibres permet la mise en place de processus de transport de charges intrinsèques. De plus, l’eau joue un rôle essentiel dans ces mécanismes et les principaux porteurs de charges sont certainement des protons. En parallèle, une simulation de dynamique moléculaire appuyée notamment par des expériences de diffusions des neutrons, a mis en évidence une forte interaction entre l’eau et les fibres. Deux canaux d’eau stabilisés par liaisons hydrogènes se formeraient le long des fibres. Ces derniers peuvent permettre le transport de protons par un mécanisme de type Grotthuss. Des réactions électrochimiques, en particulier l’électrolyse de l’eau, seraient la source des protons transportés grâce aux fibres. Cela conduit à l’instauration d’un courant catalytique à partir d’un seuil de tension de polarisation. Enfin, deux effets photo-électriques ont été observés lorsque les fibres sont irradiées entre 200 et 400 nm. Le premier est un photo-courant qui serait dû à la photolyse de l’eau adsorbée dans les échantillons. Le second, qualifié de « photo-courant inverse », se produit plus spécifiquement à la longueur d’onde de 280nm et seulement en présence de dioxygène. Il engendre une diminution de la conductivité. Cela serait dû à une réaction entre l’état triplet des tryptophanes des fibres et le dioxygène, captant in fine des protons. / Amyloid fibers are very promising biomaterials for bioelectronics, especially for interfacing with biological systems. These self-assembled proteins fibers are easy to synthetize, to tune and to functionalize. Their physical properties such as stability and mechanical strength are noticeable. We studied charge transport processes in HET-s(218-289), the only amyloid fibers we know the atomic structure. The samples were characterized as “dried” films by electrical measurement and electrochemistry. The influence of several parameters such as temperature, humidity or light was investigated. We demonstrated that the fiber organization allows intrinsic charge transport mechanisms in which water plays a crucial role. Furthermore, the dominant charge carriers would be protons. Molecular dynamic simulation and neutron diffusion experiments run in parallel show strong water-fibers interactions. In particular, H-bonded water wires can be formed along the fibers and support proton transport according to a Grotthuss-like mechanism. Proton production would result from electrochemical reactions, especially from water electrolysis. Therefore a catalytic current is detected when the bias exceeds a certain threshold. In addition, two photoelectric phenomena were observed when the fibers are irradiated with near UV light (200-400nm). The first one is a photocurrent probably due to water photo-splitting. The other occurs specifically at 280nm wavelength and in the presence of molecular oxygen. It leads to a decrease of the sample conductivity. This likely results from chemical reaction(s) between triplet-state tryptophan and oxygen that consumes protons.

Page generated in 0.8188 seconds