• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 34
  • 6
  • 2
  • 2
  • Tagged with
  • 84
  • 29
  • 28
  • 11
  • 11
  • 11
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Complex flow dynamics of nanofibre formation in centrifugal spinning : modelling and experiment

Noroozi, Sooran 11 April 2024 (has links)
Titre de l'écran-titre (visionné le 14 août 2023) / Le grand rapport surface/volume et la morphologie spéciale des nanofibres leur confèrent d'excellentes propriétés mécaniques, une capacité de transfert de chaleur et des caractéristiques électriques. Bien qu'il existe diverses techniques de fabrication conventionnelles pour produire des nanofibres, celles-ci souffrent généralement de plusieurs inconvénients, tels que de faibles taux de production, des restrictions sur les matériaux, des complexités de processus et des coûts de production élevés limitant la production de masse de nanofibres. La demande croissante de nanofibres, d'autre part, motive les efforts pour éliminer ces barrières, car ces matériaux trouvent de plus en plus d'applications dans les secteurs de l'énergie et de la santé, par exemple pour produire des nano-filtres à air et à eau, des capteurs, des batteries et des masques chirurgicaux de protection. La technique de filage centrifuge (CS) a récemment permis la fabrication de nanofibres, avec beaucoup moins de limitations. Dans le procédé CS, une solution / fusion de polymère est placée dans un réservoir à rotation rapide (également appelé lière) avec plusieurs buses, extrudant le polymère en fibres incurvées très fines et longues (ou jets incurvés) sous la force centrifuge ; ces jets fortement courbés se prolongent alors dans l'espace jusqu'à atterrir sur des collecteurs placés à l'écart du centre de rotation. En conséquence, de grands volumes de fibres polymères avec des diamètres moyens de quelques centaines de nanomètres sont produits. Le procédé CS est une technique alternative très prometteuse pour produire des nanofibres. Cependant, la compréhension, l'amélioration et l'optimisation du processus CS ont été limitées, principalement en raison de la présence de nombreux paramètres affectant la dynamique d'écoulement complexe du jet courbe, par exemple les forces de rotation (centrifuge et de Coriolis), inertielles, visqueuses, rhéofluifidiantes, élastiques, de tension superficielle et gravitationnelles, ainsi que les effets de diffusion de masse, de diffusion thermique, d'aérodynamique et de rapport de viscosité. Pour avoir un compréhension fondamental du processus CS, dans ce thèse de doctorat, nous considérons mathématiquement et expérimentalement les effets des paramètres susmentionnés sur la dynamique du jet courbe. Pour généraliser nos résultats, nous les présentons en termes de nombres adimensionals, y compris les nombres de Rossby (Rb), de Reynolds (Re), de Weber (We), de Froude (Fr), de Weissenberg ( Wi), de Péclet de polymère (Pe), de Péclet l'air (Pe*), et de Reynolds de l'air (Re*), ainsi que l'indice de loi de puissance (m), le rapport de viscosité (δₛ) et la position radiale du collecteur (R). Dans le Chapitre 1, nous développons un modèle général régularisé de fibres minces (string) pour prédire les effets des forces centrifuges, de Coriolis, d'inertie, visqueuses, de fluidification par cisaillement, de tension superficielle et gravitationnelles sur la trajectoire en régime permanent et l'amincissement du rayon de la fibre. Nous montrons que pour de grandes vitesses de rotation (petit Rb), le rayon de la fibre diminue rapidement sur de petites longueurs d'arc, ce qui devient plus prononcé lorsque Re et We augmentent ou que m diminue. En fin, nous constatons que la force gravitationnelle (quantifiée via Fr) n'affecte l'angle vertical de la fibre qu'aux petites longueurs d'arc. Dans le Chapitre 2, motivés par nos observations expérimentales, nous développons un modèle mathématique complet pour la formation de nanofibres dans le processus CS, mais pour les fluides newtoniens. Par rapport au chapitre précédent, notre modèle inclut des paramètres supplémentaires, tels que la diffusion de masse dans le jet, la diffusion de masse dans l'air et les effets aérodynamiques. Nos résultats, y compris la comparaison avec les expériences, révèlent que les effets aérodynamiques doivent être pris en compte pour permettre une prédiction correcte de la trajectoire et du rayon du jet. Augmenter Re*, Re et R conduit à un jet plus long. La diminution de We force le jet à s'enrouler plus étroitement autour de la filière, mais cela montre des effets insignifiants sur l'évaporation du solvant. Les changements de Pe et Pe* n'affectent pas de manière significative la trajectoire du jet. Dans le Chapitre 3, nous étendons notre travail pour développer un modèle mathématique intégré supérieur, qui peut également tenir compte de la dynamique transitoire de la fibre. Notre modèle nous permet d'analyser les paramètres d'écoulement critiques couvrant une large gamme, en incorporant les équations de moment cinétique, le modèle constitutif viscoélastique de Giesekus, les effets de traînée air-fibre et l'équation d'énergie dans les équations du modèle. En utilisant le modèle, nous pouvons analyser le comportement dynamique des jets de polymère fondu/solution. Nous constatons que la rhéologie non linéaire affecte remarquablement la trajectoire, le rayon et les contraintes normales des fibres. L'augmentation de Wi conduit à une fibre plus épaisse, tandis que l'augmentation de δₛ montre une tendance opposée. De plus, en augmentant Wi, la courbure de la fibre est améliorée, amenant la fibre à se rapprocher du centre de rotation. Le Chapitre 4 combine en outre expériences et modélisation. Dans nos expériences, nous obtenons les données expérimentales à l'aide d'une combinaison unique d'outils : ceux-ci incluent notre dispositif CS interne, des caractérisations de rhéométrie et des tests au microscope électronique à balayage. Nos expériences sont couplées et apportent des validations à un puissant modèle mathématique, développé sur la base des équations constitutives viscoélastiques du modèle de Maxwell convecté supérieur. Cela nous permet d'examiner le processus CS en fonction des paramètres qui sont généralement importants dans les expériences à l'échelle du laboratoire, notamment la concentration en polymère, la vitesse de rotation, le diamètre de la buse, le rayon de la filière et l'angle de la buse.
2

Polytetrafluoroethylene nanofibres fabricated by the island-in-the-sea method

Zhang, Zhifei January 2017 (has links)
Polytetrafluoroethylene (PTFE) has some unique properties such as high hydrophobicity and high resistance to elevated temperatures, chemicals and solvents, which make it of interest for numerous fibre and textile applications. However, PTFE normally has a very high viscosity and poor flowability in the melt due to its ultra-high molecular weight, meaning that it cannot be readily melt-spun into textile fibres. In addition, PTFE is insoluble in all common organic solvents, prohibiting its use in common solution spinning methods such as dry, wet or electrospinning. Here we aim to develop an easy and environmentally friendly alternative for the production of PTFE nanofibres, using a modified island-in-the-sea spinning process. For this, first a dispersion of PTFE homopolymer, PVA and water was compounded to create a blend of PTFE particles in PVA solution using different methods, including casting, single-step extrusion and two-step-compounding and extrusion. After solid-state drawing of this blend and removal of the PVA, we were able to collect PTFE nanofibres with finest diameters of around 50nm and lengths up to 15μm. The effects of blend composition, morphology and drawing on PTFE fibre formation and properties were studied and discussed. Furthermore, some other material modification systems, including plasticized PVA, or the use ethylene glycol as a solvent, was studied with the aim of scaling up the fabrication of PTFE nanofibres by spinning the PTFE/PVA blend fibres directly for a twin-screw extruder.
3

An investigation on the machining of multidirectional glass and carbon fibre reinforced polymer composites

Curnick, Paul January 2013 (has links)
No description available.
4

High strength and high modulus electrospun nanofibres

Yao, Jian January 2014 (has links)
In the last two decades, a rapidly growing polymer processing technology, electrospinning, has attracted great interests as it provides a viable and simple method to create ultra-fine continuous fibres. Despite the potential utilization of electrospun nanofibres in many fields, their success is limited so far due to their poor mechanical properties compared to corresponding textile fibres made from the same polymers, which is mainly ascribed to the low degree of orientation and chain extension of the macromolecules along the fibre axis in such fibres. In this thesis, first an in-depth review of the mechanical properties of electrospun fibres and recent developed methodologies to generate high strength and high modulus nanofibres will be presented. In the experimental work, electrospinning of rigid polymer PPTA was attempted and mechanical properties of obtained fibres were evaluated (Chapter 3). It was shown that the electrospinning process cannot be easily operated in a controllable and continuous manner although some high performance fibres were obtained. Chapter 4 dealt with the electrospinning of reactive mesogens (liquid crystal monomers) by employing polymers (PMMA and PA6) as matrix. The mechanical properties of the resulting composite nanofibres (PA6/RM257) showed dependence on the reactive mesogen (RM257) content and the phase separation between PA6 and RM257. In Chapter 5, a high performance polymer BPDA/PDA/ODA was synthesized and electrospun; the nanofibres were characterized using FTIR and WAXD and their mechanical tests were carried out based on unidirectional mats and multifilament bundles. A Weibull modulus based model was introduced to estimate the tensile strength of single nanofibres in such bundles. Subsequently, composites based on BPO nanofibres in a rubbery thermoplastic matrix were fabricated and evaluated in Chapter 7 using composite mechanics theories for off-axis properties and „Rule of Mixture‟ which were used to back-calculate the Young‟s modulus of single BPO nanofibres. From this it could be concluded that the developed co-polyimide BPO nanofibres exhibit among the highest mechanical properties of electrospun nanofibres reported in literature so far. It can be concluded that the electrospun BPO co-polyimide nanofibres and p-aramid fibres possess among the highest mechanical properties reported for electrospun fibres so far.
5

La synthèse d'une électrode pour supercondensateur à partir d'aérogels assemblés à partir de nanofibres de ligne électrofilées

Bouchard, Antoine 21 November 2024 (has links)
Les supercondensateurs ont reçu une attention considérable en raison de leur grande densité de puissance. Cependant, leur densité d'énergie reste limitée et une grande partie des électrodes sont composées de carbones provenant de matériaux pétroliers. Ici, une électrode est créée à partir d'aérogels composés de nanofibres de lignine électrofilée. Premièrement, des membranes de nanofibres de lignine sont composées par électrofilature. Ces membranes sont composées de nanofibres continues possédant un diamètre entre 200 et 900 nm. Les membranes possédant une concentration de 25% de lignine sont choisies pour subir un broyage, un freeze-casting, une lyophilisation et une carbonisation pour donner des aérogels de carbone. Ces aérogels présentent une surface spécifique de 2,9700 m²/g possiblement causé par un broyage insuffisant des membranes. De plus, ils présentent des impuretés introduit par la lignine utilisée. Ces aérogels sont ensuite déposés sur un collecteur pour servir d'électrode. Après, les électrodes subissent un CV qui donne une capacité de 0, 003 F ainsi qu'une densité d'énergie maximale de 4,2449 · 10⁻⁵ W h/kg pour une densité de puissance de 0,006367 W/kg / Supercapacitors have received considerable attention due to their high power density. However, their energy density remains limited and a large part of the electrodes are composed of carbone derived from petroleum materials. Here, an electrode is created from aerogels assembled from electrospun lignine nanofibers. First, fiber nanofiber membranes are synthesized by electrospinning. These membranes are composed of nanofibers that have a diameter between 200 and 900 nm. The membranes having a concentration of 25% of lignin are chosen to undergo grinding, freeze-casting, freeze-drying and carbonization to produce carbon aerogels. These aerogels have a specific surface area of 2,9700 m²/g possibly due to insuf- ficient grinding of the membranes. In addition, they present impurities due to the use of non-distilled water during carbonization. These aerogels are then deposited on a collector to serve as an electrode. Afterwards, the electrodes undergo cyclic voltammetry which gives a capacity of 0,003 F as well as a maximum energy density of 4,2449 · 10⁻⁵ W h/kg for power density 0,006367 W/kg
6

Electrospinning of poly (lactic) acid for biomedical applications : analysis of solution properties and process parameters, drug encapsulation and release

Casasola, Raffaella January 2016 (has links)
Electrospinning or electrostatic fibre spinning employs electrostatic force to draw fibres from a liquid, either a polymeric solution or a polymer melt in the form of a charged jet. The jet solidifies and is deposited on a collector in the form of a non-woven fibrous mat. Electrospun fibres have diameters between several nanometres to a few microns, which is one of the main advantages of the process, as materials at the nanoscale have shown great potential in a wide range of healthcare and energy applications. The initial selection of solvents to dissolve the polymer for production of electrospun defect-free nanofibres has generally been based on experience from similar polymer-solvent systems. The selection of a solvent is important to control the fibre surface morphology that would eventually determine the field of application for the electrospun nanofibrous structures. However, little attempt has been made to study the correlation between the solubility behaviour of the polymer in different solvents and the electrospinnability of the polymer solutions. From this perspective, the first part of this thesis focused on the selection of different solvents for the production of poly (lactic acid) (PLA) nanofibres. Solution properties were measured and the electrospun nanofibrous structures were analysed in terms of morphology and nanofibre diameter. Understanding the molecular interactions between polymer and solvents enables the correct solvent selection to ensure the desired nanofibrous structure. Solubility is not the only criterion for nanofibre formation from a polymer solution. Polymer concentration is one of the main factors affecting electrospinning. For this reason, a relationship between PLA concentration and nanofibre morphology was determined by solution property measurements. A three step systematic methodology has been proposed in this thesis in order to select appropriate solvent and polymer concentration for the production of homogeneous electrospun mats made of defect-free nanofibres. This methodology was validated for PLA nanofibres, but it can be used for a wide range of polymers. It simplifies the solvent selection process and can significantly improve the trial and error approaches used at present. Despite several models for electrospinning having been proposed to predict the behaviour of the electrospun jet, there are no simple methods for a priori prediction of the final morphology of the electrospun mat from the knowledge of solution properties and electrospinning process parameters. Moreover the prediction of nanofibre diameter is still a difficulty and little research has been done on this. For these reasons, the second part of this thesis is dedicated to understanding the effect of some process parameters on the jet electric current and hence on the morphology of PLA nanofibres. The values of current measured were used to verify an equation proposed in the literature for the prediction of the final diameter. The experimental diameter of the PLA nanofibres was compared with the predicted value. In the last chapter coaxial electrospinning was employed to produce PLA nanofibres with a core shell structure for the incorporation of a model hydrophilic drug in the nanofibre core. The large surface area to volume ratio of nanofibres offers the great advantage of higher efficiency of encapsulation and better control of the release profile compared with other drug delivery systems. Even though successful encapsulation of drug and proteins have been reported, it is not clear how to verify the continuous drug distribution in the core throughout the whole length of the fibre. The solution properties of both core and shell strongly affect the outcome of the electrospinning process. For this reason, several techniques have been used to verify the formation of a core shell structure and proper encapsulation of the drug. In addition, the efficiency of drug encapsulation was evaluated and drug release studies were performed.
7

Optimisation de la structure textile des prothèses vasculaires pour un développement en monocouche des cellules endothéliales

François, Sébastien 17 April 2018 (has links)
Thèse en cotutelle présentée au département des mines, de la métallurgie et des matériaux, Université Laval, Québec et École doctorale Jean-Henry Lambert, Université de Haute-Alsace, Mulhouse. / Les prothèses vasculaires textiles en polyethylene téréphtalate (PET) sont utilisées depuis plus de cinquante ans en chirurgie cardiovasculaire. Elles sont fiables pour les grands diamètres (>8mm), cependant des occlusions se présentent souvent après implantation pour les petits diamètres (6-8mm). L'occlusion survient, car la surface des prothèses est peu hémocompatible. Or, l'hémocompatibilité des prothèses serait largement améliorée si ces dernières se recouvraient d'une couche de cellules endothéliales qui tapissent naturellement les vaisseaux sanguins. Cependant, ce recouvrement n'est pas ou peu observé sur les prothèses implantées. Les matrices protéiniques qui servent avant tout à perméabiliser la prothèse et qui recouvrent les prothèses n'ont pas d'effet positif sur l'endothélialisation. Ce projet vise à mettre en évidence que les textiles bruts ne sont pas un support viable pour le développement de ces cellules endothéliales, puis propose de remplacer les matrices protéiniques par un recouvrement synthétique. Pour ce faire, de l'acide poly-L-lactique solubilisé a été filé sous forme de nanofibres non tissées et déposées sur la surface luminale de la prothèse textile de PET. L'étirage par jet d'air utilisé pour former ces fibres a été d'abord caractérisé selon un modèle plan, puis adapté à la forme tubulaire des prothèses. Les nanofibres ont été évaluées sur le plan de la cytocompatibilité, de l'adhérence et de la prolifération avec un modèle de cellules endothéliales animales. Enfin, ce travail vise à optimiser l'adhérence de ces fibres sur le PET par l'emploi d'une technique de modification de surface par plasma à pression atmosphérique. Les résultats montrent qu'il est possible de produire des nanofibres d'acide polylactique et de contrôler leur diamètre en ajustant la concentration de la solution. Ces nanofibres permettent de sceller la paroi de la prothèse textile et présentent des taux de cristallinité variables en fonction des paramètres de filage. Enfin, les cellules endothéliales prolifèrent en monocouche sur des prothèses recouvertes de nanofibres. Par ailleurs, il est possible d'optimiser l'adhérence des nanofibres sur le PET avec un traitement par plasma à pression atmosphérique. En conclusion nous avons proposé une alternative prometteuse à l'enduction traditionnelle des prothèses pour favoriser la prolifération en monocouche des cellules endothéliales.
8

Electrospinning bicomponent nanofibres for platinum ion extraction from acidic solutions

Willemse, Abraham Cilliers 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: Trace amounts of soluble Pt(II/IV) ions are not recovered using current refining processes. There are both economic and environmental incentives to recover these Pt(II/IV) ions from effluent. The work presented in this dissertation was aimed at producing functionalised electrospun nanofibre webs for the extraction of trace amounts of Pt(II/IV) ions in the form of [PtCl6]2- from acidic solutions. An insoluble, low molecular weight oligomeric compound, poly(N-terephthaloylthiourea)-N’,N’-piperazine, was synthesised from relatively inexpensive starting reagents using a “one-pot” two step synthesis procedure. Interest in this compound lies in its ability to extract Pt(II/IV) ions from acidic, chloride-rich solutions, as may be encountered in real process solutions in platinum group metal refineries. The product was isolated and characterised with an array of techniques, including GPC, elemental analysis, 1H and 13C NMR, as well as FTIR, and it was found to be a mixture of various molecular weight fractions with a degree of chemical variance between oligomer chains. The poly(N-terephthaloylthiourea)-N’,N’-piperazine was blended with polyacrylonitrile (PAN) and electrospun using both the classical single needle approach as well as a high throughput free-surface electrospinning process, called ball electrospinning. The nanofibres consisted of the oligomer which provided the affinity for [PtCl6]2- while PAN provided sufficient polymer chain entanglement which allowed the formation of fibrous structures. Two different solutions were found to produce nanofibres with the desired dimensions, namely: 6 wt% and 8 wt% PAN solution, both having a PAN to oligomer ratio of 7:3. The fibres produced by needle electrospinning and ball electrospinning had average fibre diameters of 172 ± 35 nm and 210 ± 49 nm, respectively. The ball electrospinning process had 86 times greater fibre production rates compared to needle electrospinning. The effects of three experimental conditions on the recovery of Pt(II/IV) ions by the poly(N-terephthaloylthiourea)-N’,N’-piperazine-containing nanofibres were determined. The conditions were: (i) the effects of specific surface area and available coordination sites over time, (ii) the effect of extraction temperature, and (iii) the effect of hydrochloric acid (HCl) concentration on [PtCl6]2- extraction. Increased availability of coordination sites caused an increase in Pt ion extraction. The Pt ion extraction also increased from 0.007 g to 0.023 g for each gram of nanofibres used as the temperature was increased from 20 °C to 60 °C when using a 114 mg/L Pt stock solution. The HCl concentration had no effect on Pt ion extraction when varied between 1.0 x 10-3 M to 1 M, while increased extraction as well as fibre damage was caused at HCl concentrations greater than 1 M. Nanofibres containing an oligomeric compound with affinity for [PtCl6]2- in acidic solutions were successfully synthesised and used to extract trace amounts of Pt(II/IV) ions from solutions under various conditions. / AFRIKAANSE OPSOMMING: In huidige verfynings prosesse word spoorelemente van oplosbare Pt(II/IV) nie herwin nie. Daar is beide ekonomiese en omgewings insentiewe om hierdie Pt(II/IV) ione te verhaal uit die afval oplossings. Hierdie tesis was gemik daarop om funksionele elektrospinde nanovesel webbe te produseer vir die herwinning van Pt(II/IV) ioon spoorelemente in die vorm van [PtCl6]2- uit aangesuurde oplossings. ‘n Onoplosbare oligomeriese verbinding met ‘n lae molukulêre gewig, poly(N-terephthaloylthiourea)-N’,N’-piperazine, was uit relatief goedkoop begin reagense gesintetiseer deur gebruik te maak van ‘n “een-pot” twee stap prosedure. Die belangrikheid van die verbinding lê in sy vermoë om Pt(II/IV) ione uit aangesuurde, chloried-ryke oplossing te onttrek, soos wat in alledaagse afval oplossings van platinum-groep metalurgiese raffinaderye ondervind kan word. Die sintese produk was geisoleer en gekarakariseer deur gebruik te maak van ‘n verskeidenheid tegnieke, waaronder GPC, elementêre analise, 1H en 13C NMR sowel as FTIR, en daar was bepaal dat die produk bestaan uit ‘n mengsel van verskeie molukulêre gewig kettings met ‘n mate van chemiese variansie tussen hulle. Die gesintetiseerde oligometriese verbinding was gemeng met poliakrielonitriel (PAN) en elektrospin deur gebruik te maak van beide die klasieke naald spin proses, sowel as ‘n hoë-produksie vrye oppervlak spin proses, genaamd die bal elektrospin proses. Die nanovesels bestaan uit die oligomeer wat die affiniteit vir die [PtCl6]2- voorsien terwyl die PAN genoegsame polimeer ketting verstrengeling veroorsaak het om die veselagtige struktuur te vorm. Nanovesels met die gewensde dimensies was gevorm deur die elektrospin proses toe te pas op twee verskillende oplossings, naamlik: ‘n 6 massa persent PAN en ‘n 8 massa persent PAN oplossing, beide met ‘n PAN tot oligomeer verhouding van 7:3. Die vesels geproduseer deur die naald en bal elektrospin prosesse het ‘n gemiddelde vesel deursneë gehad van 172 ± 35 nm en 210 ± 49 nm, onderskeidelik. Die bal spin proses het egter ‘n 86 keer groter produksie kapasiteit van vesels gehad in vergelyking met die naald spin proses. Die effek van drie verskillende toestande op die effektiwiteit van die nanovesels, wat poly(N-terephthaloylthiourea)-N’,N’-piperazine bevat, om Pt(II/IV) ione te onttrek uit die oplossings was ondersoek. Die toestande was: (i) die effekte van spesifieke oppervlak area asook beskikbare ontginnings setels oor tyd, (ii) die effek van die ontginnings temperatuur, en (iii) die effek van die soutsuur (HCl) konsentrasie op die Pt ioon ontginning. ‘n Toename in die beskikbaarheid van die ontginnings setels het gelei tot ‘n toename in die Pt ioon ontginning. Die Pt ioon ontginning het toegeneem van 0.007 g tot 0.023 g vir elke gram van nanovesels gebruik soos die temperatuur verhoog was van 20 °C tot 60 °C wanneer ‘n 114 ppm (m/v) Pt ioon oplossing gebruik was. Daar was geen effek op die Pt ioon ontginning toe die HCl konsentrasie tussen 1.0 x 10-3 M en 1 M HCl varieer was nie, alhoewel daar by konsentrasies hoër as 1M ‘n verhoogde ontginning sowel as vesel skade was. Nanovesels wat ‘n oligemetriese verbinding bevat met ‘n affiniteit vir [PtCl6]2- in ‘n aangesuurde oplossing, was suksesvol gesintetiseerd en gebruik om spoorelemente van Pt(II/IV) te onttrek onder verskillende omstandighede.
9

Scaling up the production of protein nanofibres

Wong, Kang Yuon January 2011 (has links)
Protein nanofibres, commonly known as amyloid fibrils, are emerging as potential biological nanomaterials in a number of applications. Protein nanofibres are a highly ordered insoluble form of protein, which results when a normally soluble protein aggregates via a self-association process. However, researchers are currently faced with several challenges such as finding a cheap source of proteins that can be obtained without expensive purification and optimizing a scalable method of the manufacturing of protein nanofibres. This thesis has identified crude mixtures of fish lens crystallins as a cheap protein source and has optimized methods for large scale production of protein nanofibres of varying morphologies. Results show that by varying the conditions of fibre formation, individual protein fibres can be used as building blocks to form higher order structures. This ability to control the morphology and form higher ordered structures is a crucial step in bottom up assembly of bionanomaterials and opens possibilities for applications of protein nanofibres. The method of formation of protein nanofibres was optimized on a bench scale (1.5 mL Eppendorf tubes) and successfully scaled-up to 1 L volume. For larger scale-up volume (i.e. greater than 10 ml), internal surface area was important for the formation of protein nanofibres. The crude crystallin mixture prepared at 10 mg/mL was heated at 80oC in the presence of 10% v/v TFE at pH 3.8 for 24 hours and stored for an additional of 24 hours at room temperature for storage process. Aggregation and precipitation of proteins were observed as the protein solution was added to the pre-heated TFE. The resulting protein nanofibres were characterised using ThT dye binding, TEM and SEM. The TEM images show a network of long and criss-crossing protein nanofibres with individual fibres of approximately 10 to 20 nm in diameter and 0.5 to 1 μm long. These protein nanofibres were prepared in 1 mL centrifuge tubes and were left on the laboratory bench at room temperature. After 5 months, fresh TEM grids of the sample were prepared and visualized using TEM. Interestingly, TEM images show that a number of individual fibres had self-assembled in an intertwining fashion to form large bundles and higher order structures containing bundles of nanofibres up to 200 nm thick.
10

Augmentation de la limite élastique des composites à matrice céramique : SiC/SiC ou SiC/MAC

Abchiche, Bruno 25 November 2013 (has links)
Les matériaux composites connaissent un large succès. En effet les Composites à Matrice Céramique (CMC) fonctionnant à haute température ont des performances inégalées en termes de fatigue thermomécanique. La durée de vie des CMC est pourtant limitée en raison de l'apparition précoce de fissures matricielles, ouvrant autant de portes à des environnements agressifs, entraînant un abattement prématuré des propriétés mécaniques. Arriver à retarder la fissuration matricielle devient donc une étape clé pour une future importante utilisation des CMC dans l'aéronautique ou l'aérospatial. Les travaux de cette thèse se sont inscrits dans cette logique, où pour protéger les fibres et l'interphase de l'oxydation et de la corrosion, les propriétés de la matrice céramique ont tenté d'être modifiées par l'incorporation de nanofibres en leur sein et par l'émoussement de leurs macropores résiduels. / Abstract

Page generated in 0.0339 seconds