Spelling suggestions: "subject:"immunoliposomes"" "subject:"liposomes""
1 |
Nano-fonctionnalisation des hydrogels naturels bioactifs sous forme de matrice 3D / Nano-functionalization of 3D bio-active natural hydrogelsKadri, Rana 09 December 2015 (has links)
Des nouvelles méthodes de gélification avec association de différents composés permettent l’élaboration d’hydrogels sous forme de matrices 3D présentant des propriétés optimales et des fonctions intéressantes. Cette technique d’assemblage peut être effectuée par mélange de plusieurs polymères ou/et par incorporation de nanoparticules dans la matrice polymérique. Ce travail de thèse a montré l’intérêt de mettre en œuvre des réseaux interpénétrés de polymères à base d’alginate et de GelMA, et a mis en évidence l’effet de l’incorporation de nanoliposomes sur les propriétés physico-chimiques des hydrogels. Une caractérisation multi-échelle des hydrogels, a été complétée par une étude des interactions possibles au sein de la matrice 3D. Dans une première partie du travail, une analyse des propriétés de surface des matrices composites à différentes concentrations d’alginate, avant et après fonctionnalisation par des nanoparticules molles, a montré une amélioration de la mouillabilité et de l’énergie de surface des hydrogels. Les propriétés mécaniques des hydrogels ont été déterminées par une caractérisation multi-échelle incluant la microscopie à force atomique (nanoscopique) et le rhéomètre (mésoscopique). Ces analyses ont pris en compte les différentes concentrations d’alginate ainsi que les deux concentrations différentes de liposomes incorporés dans la matrice 3D. Les résultats obtenus ont montré l’intérêt de l’assemblage des deux polymères et l’effet des nanoliposomes sur le processus de gélification de l’alginate dû à une interaction entre les nanoparticules molles et l’agent réticulant (CaCl2). Une étude morphologique des hydrogels a montré la possibilité de contrôler la taille des pores en modifiant la concentration des différents composants des hydrogels ou en fonctionnalisant les matrices 3D par des nanoparticules molles. Les interactions physico-chimiques ont ensuite été étudiées par Spectroscopie de Photoélectrons X, spectroscopie de Résonance Magnétique Nucléaire et Spectroscopie Infrarouge à Transformée de Fourier / Novel crosslinking methods to design 3D hydrogels consist on an innovative combination of various components in order to create 3D structure with optimal properties and functionalities. This blending technic can be carried out by mixing several polymers or/and incorporation of nanoparticles into the polymer network. The present work showed the advantages of interpenetrating polymer networks forms composed of alginate and GelMA and highlighted the effect of the incorporation of nanoliposomes on the physico-chemical properties of the hydrogels. It consisted primarily on a multiscale characterization of the hydrogels and then on the study of the possible interactions in the 3D structure. At first, the surface characterization of the composite hydrogels at different alginate concentrations, before and after the functionalization with soft nanoparticles, showed an improvement of the wetting properties and the surface energy. The mechanical properties of the hydrogels were determined by multiscale analysis using the atomic force microscopy (nanoscopic) and the rheometer (mesoscopic). These analysis took into account the various concentrations of alginateas well as the two different concentrations of the liposomes added in the 3D structure. The results showed the effectiveness of mixing the polymers and the influence of the nanoliposomes on the alginate coagulation due to an interaction between the soft nanoparticules and the coagulation agent (CaCl2). A morphological study of the hydrogels showed the possibility to control the size of the pores by the modification of concentration for each component of hydrogel or by functionalization the 3D structure. The physicochemical interactions were then studied thanks to the X-ray Photoelectron Spectroscopy, the Nuclear Magnetic Resonance Spectroscopy and the Fourier Transform Infrared spectroscopy
|
2 |
Les nanovésicules extracellulaires sécrétées par les CSMs et les nanovésicules de synthèse issues d’agro-ressources : de leur caractérisation à leur utilisation en ingénierie tissulaire / Extracellular nanoversicles secreted by MSCs and synthetic nanoversicles resulting from agro-resources : from their characterization to their use in tissue engineeringDostert, Gabriel 23 June 2017 (has links)
Les vésicules extracellulaires nanométriques (nEVs) issues de cellules souches mésenchymateuses (CSMs) et les nanovésicules synthétiques sont au centre de nombreuses recherches pour le développement de nouvelles stratégies thérapeutiques en médecine régénérative. La mise en place d’une méthode standardisée pour isoler les nEVs à partir de milieu conditionné de CSMs et de pouvoir les caractériser a été nécessaire. Nous nous sommes concentrés sur leur taille qui se situe entre 30 et 150 nm ainsi que la présence de certains de leur marqueurs membranaires (CD9, CD63 et CD81). Durant ce travail, deux méthodes d’isolement ont été testées. Les résultats obtenus par les analyses physiques (Nanosight®, microscopie électronique à transmission) et biologiques (cytométrie en flux) des différents échantillons ont permis de standardiser la méthode d’isolement des nEVs par centrifugations et ultracentrifugations successives. Ensuite, nous nous sommes intéressés à l’utilisation de ces nEVs sécrétées par les CSMs en culture cellulaire. Il a été mis en évidence que des interactions existent entre ces nEVs et des cellules endothéliales (CEs) in vitro. Ces interactions vont entraîner des modifications dans le comportement cellulaire des CEs en augmentant leur potentiel de formation de réseaux vasculaires. En parallèle de ces travaux sur les nEVs, une étude a été réalisée sur l’utilisation de nanovésicules synthétiques, des nanoliposomes (NLPs), élaborées à partir de lécithine d’agro-ressource (saumon) comme transporteur de TGF-ß1 pour une application en médecine régénérative. Après leur caractérisation physico-chimique, cette étude préliminaire a montré que ces NLPs ne présentent pas de cytotoxicité pour les CSMs in vitro. Il existe un potentiel important d’utilisation des nEVs de CSMs ainsi des NLPs pour développer de nouvelles stratégies innovantes en thérapie « cell-free » dans le domaine de la médecine régénérative / Nanoscale extracellular vesicles (nEVs) derived from mesenchymal stem cells (MSCs) and synthetic nanovesicles are at the centre of many research studies for the development of new therapeutic strategies in regenerative medicine. A standardized method was used to isolate nEVs from conditioned media of CSMs and to characterize them. We focused on their size with a range of 30 to 150 nm and the presence of some of their membrane markers (CD9, CD63 and CD81). During this work, two isolation methods were tested. The results obtained by the physical (Nanosight®, transmission electron microscopy) and biological (flow cytometry) analyses of the different samples allowed to standardize the method of isolation of the nEVs by successive centrifugation and ultracentrifugation. Then, we studied the use of these nEVs derived from MSCs in cell culture. Interactions between these nEVs and endothelial cells (ECs) have been demonstrated in vitro. These interactions lead to changes in the cellular behaviour of ECs by increasing their potential to form vascular networks. In parallel of this work on nEVs, we studied the use of synthetic nanovesicles, called nanoliposomes (NLPs) prepared from agro-resource derived lecithin (salmon) as TGF-β1 transporters for applications in regenerative medicine. After their physicochemical characterization, this preliminary study showed that these NLPs do not exhibit cytotoxicity for MSCs in vitro. There is an important potential for the use of nEVs derived from MSCs as well as NLPs to develop new cell-free therapy innovative strategies in the field of regenerative medicine
|
3 |
Fonctionnalisation et caractérisation multi-échelle de films minces de chitosane : vers une utilisation en ingénierie tissulaire / Functionalization and multi-scale characterisation of chitosan films for tissue engineering applicationZhang, Hongyuan 16 December 2014 (has links)
Ce travail porte sur la fonctionnalisation en volume et/ou en surface et la caractérisation multi-échelle de films minces de chitosane utilisés en ingénierie tissulaire. L’ajout des nanoliposomes à base de lécithine naturelle (végétale ou marine) et un traitement plasma sont employés pour réaliser ces deux fonctionnalisations. De nombreuses analyses des caractéristiques physico-chimiques et « structurales » de films minces ont montré que lorsqu’on ajoute 10 % de nanoliposomes dans les films de chitosane, l’hydrophobicité de la surface s’améliore de 18 à 36 %, ce fait est attribué à la présence de composants polaires. La cristallinité est légèrement augmentée ; à 37 °C, le module d’Young diminue de 6 GPa environ jusqu’à près de 4 GPa ; aucune nouvelle liaison ne se crée entre le chitosane et les nanoliposomes ; une diminution de degré de déacétylation est observée, qui pourrait être associée à la conformation des nanoliposomes ajoutés en volume aux films de chitosane. Le traitement plasma a réussi à modifier la structure de surface du chitosane seul et du chitosane mélangé aux nanoliposomes par greffe de groupements actifs (groupes amine, C-O, COOH, -OH). En revanche, dans notre cas, les liaisons hydrogène entre les groupes polaires créés par le traitement plasma peuvent être éliminées partiellement après un temps donné, ce qui limite l’application du traitement. Ensuite, des études préliminaires sur la biocompatibilité in vitro et la biodégradabilité in vitro sont réalisées pour les films de chitosane et du chitosane mélangé aux nanoliposomes. Les cellules souches mésenchymateuses sont utilisées pour l’étude de la première, et une solution de PBS contenant 10 mg/L de lysozyme pour la seconde. Les propriétés physico-chimiques des films de chitosane mélangé aux nanoliposomes marines, leur faible cytotoxicité aux cellules et leur stabilité dans la solution de PBS contenant du lysozyme leur permettent d’être utilisés comme matrice de support dans le domaine de la médecine régénérative / This work focused on functionalized chitosan thin films in the bulk and/or on the surface by nanoliposomes based on natural lecithin (plant and marine) and plasma treatment. Various techniques were used for physicochemical properties analysis of functionalized thin films. The results showed that by adding the nanoliposomes into the chitosan scaffold, the surface wettability of thin films increased from 18 % to 36 %. The crystallinity degree was slightly improved in blend thin films. Any new bond was determined by fourier transform infrared spectroscopy (FTIR), which confirmed that there is no chemical interaction between the nanoliposomes and chitosan. The Young’s modulus of blend thin films deceased from 6 GPa to 5 GPa. The morphological, nanomechanical properties and adhesion force of each scaffold system determined by Scanning Probe Microscopy (HarmoniXTM mode) showed that the fish nanoliposomes/chitosan thin film had the most similar properties compared to the pure chitosan thin film. The surface of chitosane films and nanoliposomes/chitosane blend films were modified by the plasma treatment. Functional groups (amine groups, C-O, COOH, -OH) are grafted onto the surface enhancing thus the surface energy of the films. But the hydrogen bonds between the polar groups introduced by the treatment can be destroyed after a given time; the author proposed that the functionalization in the bulk by adding of nanoliposomes provided more stable and greater possibility of new materials producing than the functionalization at the surface by plasma treatment for potential tissue engineering application. Then, in vitro biocompatibility preliminary study was carried using human mesenchymal stem cells (hMSCs); and in vitro biodegradability study was tested in the phosphate buffered saline (PBS) mixed with 10 mg/L lysozyme. The films of chitosan functionalized by salmon nanoliposomes showed more interesting as matrix extracellular for regenerative medicine applications because of their physico-chemical properties, low cytotoxicity and the stability inside the PBS and lysozyme solutions.
|
4 |
Propiedades de films de almidón de maíz. Influencia de la incorporación de lípidos, biopolímeros y compuestos bioactivosJiménez Marco, Alberto 25 April 2013 (has links)
Abstract
Biodegradable starch-glycerol based films were obtained. The influence of lipid compounds (palmitic, stearic and oleic acid), other polymers (hydroxypropylmethylcellulose and sodium caseinate) and bioactive compounds (¿-tocoferol, D-limonene and orange essential oil) on film properties (oxygen and water vapour barrier, optical, mechanical, nano- and microstructural). Furthermore the effect of storage time on films¿ properties was also considered.
Fatty acids addition did not improve the water vapour ability of films except for non-stored saturated fatty acids containing films. X-ray diffraction results showed that cristallinity of films increased with storage time, thus increasing the stiffness and decreasing the gloss of films. Furthermore, crystallinity affected the water sorption capacity of films as function of relative humidity and temperature. Glass transition temperature of starch films varied with saturated fatty acids addition. However, oleic acid did not affect this parameter. The presence of fatty acids promoted the formation of V-type structures, thus indicatin the formation of amylose-lipid complexes that inhibited the developmet of other crystalline structures.
The effect of the incorporation of other biopolymers to improve the functionality of starch films was also studied. Hydroxypropylmethylcellulose (HPMC) addition inhibited starch retrogradation. However, obtained films were more permeable, specially in case of oxygen. HPMC addition produced phase separation as it was observed by scanning electron microscopy. On the contrary, sodium caseinate incorporation (NaCas) allowed to obtain homogeneous films and less permeable to oxygen. Obtained films showed less mechanical resistance in comparison with pure starch films but a greater flexibility without increasing the water vapour permeability. Rearrangement of polymers chains during storage reduced the mechanical resistance, the extensibility and the gloss of composite films. Regarding the obtained results, the film including a starch:protein ratio of 50:50 was choosen as the film with the most adequate properties.
Composite film (starch:Nacas ratio = 50:50) was studied as a matrix for the incorporation o active compounds (¿-tocopherol, D-limonene and orange essential oil). The effect of ¿-tocopherol addition was compared with the incorporation of oleic acid and their mixture. Lipids addition promoted phase separation between starch and NaCas due to the different interactions between each polymer and the lipids. Furthermore, oleic acid addition increased significantly the oxygen permeability whereas ¿-tocopherol greatly improved the antioxidant capacity of films without affecting the oxygen permeability.
D-limonene and orange essential oil incorporation was carried out by forming rapeseed and soy nanoliposomes, which acted as carriers of bioactive components. Nanoliposomes incorporation was performed directly in starch-NaCas dispersions without any homogenization, to avoid nanoliposomes damages. Bioactive compounds addition did not confer antimicrobial capacity to the films (except for soy-orange oil nanoliposomes containing film) probably due to the high stability of nanoliposomes and the low antibacterial activity of D-limonene and orange essential oil. / Se han desarrollado y caracterizado films biodegradables a base de almidón
de maíz y glicerol como plastificante, evaluando al mismo tiempo el efecto de la
adición de componentes lipídicos (ácido palmítico, esteárico y oleico), otros
polímeros (hidroxipropilmetilcelulosa y caseinato de sodio) y compuestos
bioactivos (¿-tocoferol, aceite esencial de naranja y D-limoneno) sobre las
propiedades de los films (propiedades barrera al vapor de agua y al oxígeno,
ópticas, mecánicas, micro y nanoestructurales). Asimismo se evaluó la influencia
del tiempo de almacenamiento en las propiedades de los films.
La adición de ácidos grasos no mejoró notablemente la permeabilidad al
vapor de agua excepto en el caso de los films con ácidos grasos saturados y solo en
films no almacenados. Los resultados de difracción de rayos X mostraron que la
cristalinidad aumentó con el tiempo de almacenamiento, incrementándose la
rigidez, y disminuyendo el brillo de los films. Del mismo modo, la cristalinidad
afectó a la capacidad de sorción de agua de los films en función de la humedad
relativa y la temperatura. La temperatura de transición vítrea de los films de
almidón se vio afectada por la adición de ácidos grasos saturados pero no por la
adición de ácido oleico. La presencia de dichos componentes promovió la
formación de estructuras cristalinas tipo V, indicando la formación de complejos
entre los lípidos y las cadenas de amilosa e inhibiendo la formación de otros tipos
de formas cristalinas.
Se analizó también el efecto de la incorporación de otros biopolímeros en la
posible mejora de la funcionalidad de los films de almidón. En las mezclas con
hidroxipropilmetilcelulosa (HPMC), se inhibió la retrogradación del almidón en los
films composite, pero se observó un efecto negativo en las propiedades barrera de
los mismos, que fueron más permeables, principalmente al oxígeno. La adición de HPMC produjo separación de fases en los films (observada por microscopía
electrónica de barrido). Por el contrario, la incorporación de caseinato de sodio
(NaCas) permitió formar films homogéneos y menos permeables al oxígeno. Los
films presentaron una resistencia mecánica algo menor que los films de almidón
puro pero una mayor flexibilidad sin incrementar los valores de permeabilidad al
vapor de agua. La reorganización de las cadenas de los polímeros con el tiempo de
almacenamiento provocó la disminución de la resistencia mecánica, la
deformabilidad y el brillo de los films composite. Atendiendo a los efectos
observados, se eligió como formulación más adecuada el film composite formado
por almidón y NaCas con un ratio de polímeros del 50:50.
El film composite de almidón y NaCas (50:50) se estudió como matriz para la
incorporación de compuestos bioactivos como son el ¿-tocoferol y el aceite
esencial de naranja o su principal componente, el D-limoneno. El efecto de la
adición de ¿-tocoferol se comparó con la influencia de la adición de ácido oleico y
también con la adición de ambos compuestos. La adición de lípidos provocó una
separación de fases entre el almidón y el NaCas debido a la diferente interacción
entre cada polímero y los lípidos. Asimismo la adición de ácido oleico incrementó
significativamente la permeabilidad al oxígeno, al contrario que el ¿-tocoferol, que
además impartió a los films una elevada capacidad antioxidante.
La incorporación de aceite esencial de naranja y D-limoneno se realizó
utilizando nanoliposomas de lecitina de soja y lecitina de colza que encapsularon
los compuestos activos. La incorporación de nanoliposomas en los films se realizó
directamente en las dispersiones acuosas sin posterior homogeneización para evitar
su ruptura. La adición de los compuestos bioactivos en forma de nanoliposomas no
confirió capacidad antimicrobiana a los films, salvo en el caso de los
nanoliposomas de lecitina de soja con aceite esencial, debido probablemente a la
dificultad de los compuestos encapsulados para difundir en el film por la gran estabilidad de los liposomas y a la baja actividad antilisteria del D-limoneno y el
aceite esencial de naranja. / Jiménez Marco, A. (2013). Propiedades de films de almidón de maíz. Influencia de la incorporación de lípidos, biopolímeros y compuestos bioactivos [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/28214 / Premios Extraordinarios de tesis doctorales
|
Page generated in 0.0459 seconds