• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 237
  • 74
  • 67
  • 43
  • 8
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 687
  • 211
  • 123
  • 122
  • 92
  • 89
  • 84
  • 79
  • 67
  • 65
  • 63
  • 63
  • 58
  • 57
  • 56
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
461

Semiconductor colloidal quantum dots for photovoltaic applications

Cheng, Cheng January 2014 (has links)
This thesis studies lead suphide (PbS) colloidal quantum dots and their photovoltaic applications. Different sizes of PbS QDs were synthesised and characterised using absorption spectroscopy and transmission electron microscopes. PbS QD Schottky junction devices were fabricated with AM1.5 power conversion efficiency up to 1.8 %. The Schottky junction geometry limits the device performance. A semiconductor heterojunction using ZnO as an electron acceptor was built and the device efficiency increased to 3%. By studying the light absorption and charge extraction profile of the bilayer device, the absorber layer has a charge extraction dead zone which is beyond the reach of the built-in electric field. Therefore, strategies to create a QD bulk heterojunction were considered to address this issue by distributing the junction interface throughout the absorber layer. However, the charge separation mechanism of the QD heterojunction is not clearly understood: whether it operates as an excitonic or a depleted p-n junction, as the junction operating mechanism determines the scale of phase separation in the bulk morphology. This study shows a transitional behaviour of the PbS/ZnO heterojunction from excitonic to depletion by increasing the doping density of ZnO. To utilise the excitonic mechanism, a PbS/ZnO nanocrystal bulk heterojunction was created by blending the two nanocrystals in solution such that a large interface between the two materials could facilitate fast exciton dissociation. However, the devices show poor performance due to a coarse morphology and formation of germinate pairs. To create a bulk heterojunction where a built-in electric field could assist the charge separation, a TiO<sub>2</sub> porous structure with the pore size matching with the depletion width was fabricated and successfully in-filled by PbS QDs. The porous device produces 5.7% power conversion efficiency, among one of the highest in literature. The enhancement comes from increased light absorption and suppression of charge recombination.
462

THE PHARMACOKINETICS OF METAL-BASED ENGINEERED NANOMATERIALS, FOCUSING ON THE BLOOD-BRAIN BARRIER

Dan, Mo 01 January 2013 (has links)
Metal-based engineered nanomaterials (ENMs) have potential to revolutionize diagnosis, drug delivery and manufactured products, leading to greater human ENM exposure. It is crucial to understand ENM pharmacokinetics and their association with biological barriers such as the blood-brain barrier (BBB). Physicochemical parameters such as size and surface modification of ENMs play an important role in ENM fate, including their brain association. Multifunctional ENMs showed advantages across the highly regulated BBB. There are limited reports on ENM distribution among the blood in the brain vasculature, the BBB, and brain parenchyma. In this study, ceria ENM was used to study the effect of size on its pharmacokinetics. Four sizes of ceria ENMs were studied. Five nm ceria showed a longer half-life in the blood and higher brain association compared with other sizes and 15 and 30 nm ceria had a higher blood cell association than 5 or 55 nm ceria. Because of the long circulation and high brain association of 5 nm ceria compared with other sizes, its distribution between the BBB and brain parenchyma was studied. The in situ brain perfusion technique showed 5 nm ceria (99%) on the luminal surface of the BBB rather than the brain parenchyma. For biomedical applications in the central nervous system (CNS), it is vital to develop stable and biocompatible ENMs and enhance their uptake by taking advantage of their unique properties. Cross-linked nanoassemblies entrapping iron oxide nanoparticles (CNA-IONPs) showed controlled particle size in biological conditions and less toxicity in comparison to Citrate-IONPs. CNA-IONPs considerably enhanced MRI T2 relaxivities and generated heat at mild hyperthermic temperatures (40 ~ 42°C) in the presence of alternating magnetic field (AMF). Numerous researchers showed mild whole body hyperthermia can increase BBB permeability for potential brain therapeutic application. Compared to conventional hyperthermia, AMF-induced hyperthermia increased BBB permeability with a shorter duration of hyperthermia and lower temperature, providing the potential to enhance IONP flux across the BBB with reduced toxicity. Overall, ENMs with optimized physicochemical properties can enhance their flux across the BBB into the brain with desirable pharmacokinetics, which provide great potential for diagnosis and therapy in the CNS.
463

Effect of nanoparticles on human cells from healthy individuals and patients with respiratory diseases

Osman, Ilham F. January 2010 (has links)
Ever increasing applications of nanomaterials (materials with one or more dimension less than 100 nm) has raised awareness of their potential genotoxicity. They have unique physico-chemical properties and so could have unpredictable effects. Zinc oxide (ZnO) and titanium dioxide (TiO2) are widely used in a number of commercial products. There are published studies indicating that some forms of these compounds may be photo-clastogenic in mammalian cells. What has not been investigated before is the effect of nanoparticles from these compounds in human germ cells. Thus the present study has examined their effects in the presence and absence of UV light in human sperm and compared responses to those obtained with human lymphocytes using the Comet assay to measure DNA damage. The effect of nanoparticles (40-70nm range) was studied in human sperm and lymphocytes in the dark, after pre-irradiation with UV and simultaneous irradiation with UV. The studies do provide some evidence that there are photo-genotoxic events in sperm and lymphocytes in the absence of overt toxicity. The cytotoxic and genotoxic potentials of ZnO and TiO2 as well as their effect on phosphotyrosine expression, were examined in the human epithelial cervical carcinoma cells (Hela cells). This was done to try and determine the underlying molecular events resulting from their exposure to ZnO and TiO2 nanoparticles occurring at the same time as DNA is damaged. Concentration- and time-dependent cytotoxicity, and an increase in DNA and cytogenetic damage with increasing nanoparticle concentrations were reported in this study. Mainly for zinc oxide, genotoxicity was clearly associated with an increase in tyrosine phosphorylation. Nanotechnology has raced ahead of nanotoxicology and little is known of the effects of nanoparticles in human systems, let alone in diseased individuals. Therefore, the effects of TiO2 nanoparticles in peripheral blood lymphocytes from patients with respiratory diseases (lung cancer, chronic obstructive pulmonary disease (COPD) and asthma) were compared with those in healthy individuals using genotoxic endpoints to determine whether there are any differences in sensitivity to nano-chemical insult between the patient and control groups. The results have shown concentration dependent genotoxic effects of TiO2 in both respiratory patient and control groups in the Comet assay and an increasing pattern of cytogenetic damage measured in the micronucleus assay without being statistically significant except when compared with the untreated controls of healthy individuals. Furthermore, modulation of ras p21 expression was investigated. Regardless of TiO2 treatment, only lung cancer and COPD patients expressed measurable ras p21 levels that showed modulation as the result of nanoparticle treatment. Results have suggested that both ZnO and TiO2 nanoparticles can be genotoxic over a range of concentrations without either photoa-ctivation or being cytotoxic.
464

Ultra-small open access microcavities for enhancement of the light-matter interaction

Dolan, Philip R. January 2012 (has links)
The design, construction and characterisation of a novel, arrayed, open-access optical microcavity is described. Included in this thesis are the precise fabrication details, making use of the focused ion beam. A technique for analysing and optimising the microcavities constructed, making use of an atomic force microscope is also included. Results from the optical characterisation of the fabricated microcavities are presented, including quality factors of around 104, and fitnesses of around 400. The optical analysis then progressed onto coupling colloidal semiconductor nanocrystals to the microcavity modes. This yielded room temperature Purcell enhancements, single particle sensing, and also allowed for the characterisation of a second iteration of cavities. This improved set was shown to achieve fitnesses in excess of 1800 and quality factors with a lower limit of 15000. The optical identification of single NV centres in nanodiamond is discussed, along with the development of an optical apparatus to couple them to microcavities at cryogenic temperatures. Finally several results from finite difference time domain simulations will be presented, showing ultimate mode volumes of less than 0.5 cubic wavelengths are possible for this approach.
465

Statistical mechanics of nucleic acids under mechanical stress

Matek, Christian C. A. January 2014 (has links)
In this thesis, the response of DNA and RNA to linear and torsional mechanical stress is studied using coarse-grained models. Inspired by single-molecule assays developed over the last two decades, the end-to-end extension, buckling and torque response behaviour of the stressed molecules is probed under conditions similar to experimentally used setups. Direct comparison with experimental data yields excellent agreement for many conditions. Results from coarse-grained simulations are also compared to the predictions of continuum models of linear polymer elasticity. A state diagram for supercoiled DNA as a function of twist and tension is determined. A novel confomational state of mechanically stressed DNA is proposed, consisting of a plectonemic structure with a denaturation bubble localized in its end-loop. The interconversion between this novel state and other, known structural motifs of supercoiled DNA is studied in detail. In particular, the influence of sequence properties on the novel state is investigated. Several possible implications for supercoiled DNA structures in vivo are discussed. Furthermore, the dynamical consequences of coupled denaturation and writhing are studied, and used to explain observations from recent single molecule experiments of DNA strand dynamics. Finally, the denaturation behaviour, topology and dynamics of short DNA minicircles is studies using coarse-grained simulations. Long-range interactions in the denaturation behaviour of the system are observed. These are induced by the topology of the system, and are consistent with results from recent molecular imaging studies. The results from coarse-grained simulations are related to modelling of the same system in all-atom simulations and a local denaturation model of DNA, yielding insight into the applicability of these different modelling approaches to study different processes in nucleic acids.
466

Functionalization of endohedral fullerenes and their application in quantum information processing

Liu, Guoquan January 2011 (has links)
Quantum information processing (QIP), which inherently utilizes quantum mechanical phenomena to perform information processing, may outperform its classical counterpart at certain tasks. As one of the physical implementations of QIP, the electron-spin based architecture has recently attracted great interests. Endohedral fullerenes with unpaired electrons, such as N@C<sub>60</sub>, are promising candidates to embody the qubits because of their long spin decoherence time. This thesis addresses several fundamental aspects of the strategy of engineering the N@C<sub>60</sub> molecules for applications in QIP. Chemical functionalization of N@C<sub>60</sub> is investigated and several different derivatives of N@C<sub>60</sub> are synthesized. These N@C<sub>60</sub> derivatives exhibit different stability when they are exposed to ambient light in a degassed solution. The cyclopropane derivative of N@C60 shows comparable stability to pristine N@C<sub>60</sub>, whereas the pyrrolidine derivatives demonstrate much lower stability. To elucidate the effect of the functional groups on the stability, an escape mechanism of the encapsulated nitrogen atom is proposed based on DFT calculations. The escape of nitrogen is facilitated by a 6-membered ring formed in the decomposition of the pyrrolidine derivatives of N@C<sub>60</sub>. In contrast, the 4-membered ring formed in the cyclopropane derivative of N@C<sub>60</sub> prohibits such an escape through the addends. Two N@C<sub>60</sub>-porphyrin dyads are synthesized. The dyad with free base porphyrin exhibits typical zero-field splitting (ZFS) features due to functionalization in the solid-state electron spin resonance (ESR) spectrum. However, the nitrogen ESR signal in the second dyad of N@C<sub>60</sub> and copper porphyrin is completely suppressed at a wide range of sample concentrations. The dipolar coupling between the copper spin and the nitrogen spins is calculated to be 27.0 MHz. To prove the presence of the encapsulated nitrogen atom in the second dyad, demetallation of the copper porphyrin moiety is carried out. The recovery of approximately 82% of the signal intensity confirms that the dipolar coupling suppresses the ESR signal of N@C<sub>60</sub>. To prepare ordered structure of N@C<sub>60</sub>, the nematic matrix MBBA is employed to align the pyrrolidine derivatives of N@C<sub>60</sub>. Orientations of these derivatives are investigated through simulation of their ESR spectra. The derivatives with a –CH3 or phenyl group derived straightforward from the N-substituent of the pyrrolidine ring are preferentially oriented based on their powder-like ESR spectra in the MBBA matrix. An angle of about is also found between the directors of fullerene derivatives and MBBA. In contrast, the derivatives with a –CH₂ group inserted between the phenyl group and the pyrrolidine ring are nearly randomly distributed in MBBA. These results illustrate the applicability of liquid crystal as a matrix to align N@C<sub>60</sub> derivatives for QIP applications.
467

Ultraselective nanocatalysts in fine chemical and pharmaceutical synthesis

Chan, Chun Wong Aaron January 2012 (has links)
Surface catalysed reactions play an important role in chemical productions. Developments of catalyst requiring high activity whilst improving on product selectivity can potentially have a profound effect in the chemical industry. Traditional catalyst modifications were focused on tuning the size, shape and foreign metal doping to form well defined metal nanoparticles of unique functionalities. Here, we show new approach to engineering of metal nanocatalysts via a subsurface approach can modify the chemisorption strength of adsorbates on the surface. Carbon modified nanoparticles were synthesised using glucose to stabilise Pd nanoparticles at a molecular level. Upon heat treatment, the carbonised glucose encapsulated the Pd nanoparticles with carbon atoms take residence in the octahedral holes (15 at.%). These materials were tested in liquid phase stereoselective hydrogenations of 3-hexyn-1-ol and 4-octyne. The former has importance in the fragrance industry towards the production of leaf fragrance alcohol. It was shown for the first time that the geometrically and electronically modified Pd with interstitial carbon atoms reduced the adsorption energy of alkenes, ultimately leading to higher reaction selectivity. Boron modified Pd nanoparticles was synthesised using BH<sub>3</sub>.THF in the liquid phase. The material possess high B interstitial saturation (20 at.%), which can be synthesised for the first time below 100°C. These materials were tested in the liquid phase selective hydrogenation of various alkynes and 2-chloronitrobenzene, of which the latter has importance in the pesticides industry. Kinetic modelling on the hydrogenation of 4-octyne suggests these subsurface occupied B does play a pivotal role on increasing the reaction selectivity, as removal of these species lead to decreased selectivity. Au nanoparticles were synthesised and characterised using H<sup>13</sup>COOH NMR. The new liquid NMR characterisation method is successfully applied to examine the chemisorption strength of metal nanoparticles. An attempt to synthesise PVP capped B modified Pd nanoparticles with the above NMR characterisation was investigated. It is believed the examples of subsurface atom modifications as shown here may offer future catalyst developments in this area.
468

Influence of modifiers on Palladium based nanoparticles for room temperature formic acid decomposition

Jones, Simon Philip January 2013 (has links)
Heterogeneous catalysts form a highly important part of everyday life, ranging from the production of fertiliser enabling the growth of crops that sustain much of the world's population to the production of synthetic fuels. They constitute a key part of the chemical industry and contribute towards substantial economic and environmental benefits. Heterogeneous catalysts are also believed to have an important role to play in a future hydrogen economy, reducing our requirements for fossil fuels. To this end, formic acid has been proposed as a potential hydrogen storage material for small portable devices. Additionally, formic acid has historically been used as a probe molecule to study catalyst materials and recent developments in the knowledge of its decomposition pathways and the preferred sites of these reactions, establish a good foundation for further study. This work explores a range of novel modification techniques that alter the activity of Pd nanoparticles to decompose formic acid to H<sub>2</sub> and CO<sub>2</sub>. The methods used are the addition of polymers, attaching various functional groups to the surface of the catalyst support and decoration of nanoparticles with sub-monolayer coverages of another metal. Using a range of characterisation methods including FTIR of an adsorbed CO probe, XRD and XPS coupled with computational modelling, it is found that these methods result in some significant electronic and/or geometric alterations to the Pd nanoparticles. For polymer modification, the nature of the pendent group is highly important in determining the effects of the polymer on the Pd particles, with all the tested polymers resulting in varying degrees of electronic donation to the Pd surface. The geometric modifications caused by the polymers also varied with pendent groups; with amine containing pendent groups found to selectively block low coordinate sites, preventing the undesired dehydration of formic acid which results in poisoning of the Pd catalyst by the resulting CO. Attachment of amine groups to the surface of metal oxide catalyst supports, is demonstrated to result in dramatic electronic promotional effects to the supported Pd nanoparticles, and when an amine polymer is attached to the support surface the geometric modification is again observed. Finally decoration of Pd nanoparticles with a sub-monolayer coverage of a second metal is examined, resulting in some similar electronic and geometric effects on Pd nanoparticle surfaces to those observed with polymer modification with corresponding changes in formic acid decomposition activity. Overall, a number of methods are displayed to tune the catalytic activity and selectivity of Pd nanoparticles for formic acid decomposition, resulting in catalysts with some of the highest reported TOF's at room temperature. These modification methods are believed to be potentially applicable to a wide range of other catalytic reactions that operate under mild conditions.
469

Chemical vapour deposition growth of large-area graphene on metals

Murdock, Adrian T. January 2014 (has links)
Graphene has unrivalled properties and is heralded as a revolutionary material for the 21<sup>st</sup> century. Chemical vapour deposition (CVD) on metals is a promising method to produce large-area graphene. Controlling the properties of CVD graphene is vital for its integration in a wide-range of future applications. Many factors can influence the CVD growth of graphene and its properties, therefore further investigations will be beneficial to fully understand and control this technique. In this thesis I expand the knowledge about the growth of pure and heteroatom-doped graphene by low pressure chemical vapour deposition (LPCVD) and atmospheric pressure chemical vapour deposition (APCVD) on commercially available Cu and Pt foils. Using a range of characterisation techniques, I investigate the influence of the substrate’s properties and the synthesis conditions on the growth of graphene, in pursuit of improved, controlled or optimised production, which can promote high quality, large-area, single-layer graphene, or other as desired. By characterising the topography, surface roughness, crystallographic orientations, and chemical composition of six Cu foils, I find that their properties vary greatly and this influences the growth of CVD graphene. I elucidate that the commonly used 99.8 % Alfa Aesar Cu foil has a surface coating composed of calcium, chromium, and phosphorus, which detrimentally influences graphene growth. Cleaning Cu foils with CH<sub>3</sub>COOH is shown to reduce the concentration of surface contaminants, consequently reducing the nucleation density and increasing the growth rate of CVD graphene. I also demonstrate that the shape, orientation, edge-geometry and thickness of CVD graphene domains can be controlled by the Cu crystallographic orientations. Single layer LPCVD graphene domains align with zigzag edges parallel to a single <101> direction on Cu{111} and Cu{101}, while bilayer domains align to two directions on Cu{001}. Hexagonal APCVD domains also preferentially align with edges parallel to the <101> direction(s). This discovery resolves a key challenge of controlling the orientation of individual graphene domains and opens a new avenue for tailored production of large-area CVD graphene with improved properties. By controlling the synthesis conditions of APCVD graphene on Pt foils I optimise production of ~0.5 mm single layer graphene domains with reduced nucleation density and increased growth rate of ~100 &mu;m/min by synthesis at 1150°C, a higher temperature than previously reported. The absence of large, hexagonal, single-crystal domains on pristine Pt foil, and observation of a reaction between quartz and Pt that promotes hexagonal domains, suggests that a silicon or platinum silicide surface layer may be advantageous for improved growth of graphene. Finally, I demonstrate that the dopant concentration of nitrogen-doped graphene is increased at lower synthesis temperatures and higher NH<sub>3</sub> concentration, up to 1.3 %, but with an associated decrease in the growth rate. Direct visualisation, elemental confirmation, and electronic characterisation of individual nitrogen atoms is shown for the first time using aberration corrected scanning transmission electron microscopy and electron energy loss spectroscopy. Boron-doped graphene is also synthesised. The implications of these findings, and many additional minor contributions, are wide-ranging and of considerable importance for the future understanding of CVD growth of graphene on metals, and more generally for the advancement of scientific knowledge for manufacturing large-area graphene. Collectively, these discoveries represent a significant body of work that can improve the efficiency of production and assist with controlling the properties of large-area CVD graphene.
470

Ultrasound-triggered drug release from liposomes using nanoscale cavitation nuclei

Graham, Susan M. January 2014 (has links)
Side effects of current chemotherapeutics limit their use in cancer therapy. Although many current drugs are highly toxic and potent, the effects they have on non-cancerous tissue are unbearable for patients. Targeting these drugs may provide a means to restrict their toxic effects to only cancer tissue while leaving healthy tissue unaffected. This approach requires that the drug is only available in cancer tissue, which has been achieved here by encapsulating drugs into liposomal nano-capsules which are capable of passively accumulating in cancerous tissue via the enhanced permeability and retention effect (EPR). In addition to localisation, a threshold dose must be achieved to deliver the desired toxic effect to the target tumour tissue. Previous strategies have relied on passive 'leaching' of the drug from liposomes, however this 'leaching' does not necessarily achieve the threshold dose required. In the present work, a new generation of liposomes has been developed whereby release is solely achieved in the presence of ultrasound triggered cavitation. Instigation of such cavitation events would normally require the target tissue be exposed to high and possibly damaging ultrasound pressures. To remove the need for these high pressures, cavitation nuclei have been developed to lower the cavitation threshold of surrounding media. To allow for improved co-localisation and treatment deeper into cancer tissue, cavitation nuclei were developed to be in the nanoscale size range. Two types of novel cavitation nuclei were produced, a rough surfaced carbon nanoparticle (CNP, ~180 nm) and smooth shaped polymeric nano-cup particle (NC, ~150, 470, or 770 nm). Both types of particle are solid nanoparticles with gas entrapped on their surface which was capable of cavitating in response to ultrasound without greatly affecting the particle itself. These particles are classified as cavicatalytic nanoparticles due to their ability to reduce the cavitation threshold of their surrounding media without being destroyed themselves. Finally, an entirely nanoscale release system was developed and tested in vitro and in vivo. The drug carrier (the liposome) and effector agent (the cavicatalytic nanoparticle) were used to demonstrate ultrasound triggered drug release, specifically in response to the generation of cavitation events. These cavitation events could be non-invasively monitored and characterised, adding to the potential clinical utility of the technologies developed and described here.

Page generated in 0.1452 seconds