• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 232
  • 74
  • 67
  • 43
  • 8
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 665
  • 199
  • 119
  • 116
  • 90
  • 86
  • 84
  • 75
  • 66
  • 65
  • 62
  • 60
  • 58
  • 56
  • 56
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

The Versatility of Metal Nanoparticle-Decorated Titanium Dioxide for Catalysis Including Hydrogen Generation, Solvent Radical Initiation, and Calcium Carbide Chemistry

Hainer, Andrew 08 August 2023 (has links)
Metal nanoparticle-decorated titanium dioxide (M@TiO₂) materials are an increasingly popular class of heterogeneous catalyst, useful in both photochemical and thermal systems. Heterogenous catalysts offer the advantage of reusability and ease of catalyst separation, when compared to similar homogeneous systems. M@TiO₂ catalysts also have the benefit of water/air environment stability, strong photoactivity for oxidation and reduction reactions, as well as easy and low cost synthesis of the catalyst. Other heterogeneous catalysts can offer better activity for certain reactions; however, M@TiO₂ materials are extremely versatile in a variety of different reactions and applications, and often are cheaper than other alternatives. In this dissertation, M@TiO₂ catalysts will be evaluated in hydrogen generation, solvent radical chemistry, and organic synthesis utilizing calcium carbide. Firstly, M@TiO₂ were evaluated for photocatalytic hydrogen generation from pure water splitting, and with the presence of sacrificial electron donors (SEDs) such as methanol. Efficient pure water splitting is of great interest for fuel production as it offers a perfect cycle with hydrogen gas burning to reform water as the only product. However, quite often SEDs are utilized to boost hydrogen gas generation due to poor conversion from pure water. It is often assumed that a photocatalyst effective with a SED will also be effective with water splitting. This assumption was tested, by comparing a variety of different M@TiO₂ photocatalysts for both water splitting, and SED-based hydrogen generation. Interestingly, it was found that the trends of hydrogen generation between photocatalysts are not the same in pure water splitting, as when SEDs are present. For example, Pd@TiO₂ shows great activity with a 1% methanol solution; however, no considerable H₂ generation for pure water splitting. This shows that the mechanisms of hydrogen generation with water splitting, and when SEDs are present, are very different and not directly comparable. It was also found that M@TiO₂ materials offer decent hydrogen generation rates, especially when considering the overall cost of the material. M@TiO₂ materials were then tested for their ability to photocatalytically form usable free-radicals from ethers. This was evaluated with scavenging of generated radicals by TEMPO, as well as monitoring the resulting H₂ production during the reduction portion of the system. Overall, it was found that M@TiO₂ photocatalysts are exceptional at forming radicals from ethers. All the ethers tested are able to undergo proton-coupled electron transfer (PCET) with the hole of TiO₂, as seen by the H₂ generation observed. The main considerations are instead for the ether-radical, and if the radical will fragment or primarily undergo other reactions. This led to only some of the ethers being able to form TEMPO-ether adducts. The photogenerated hole of TiO₂ is also strong enough to form benzylic radicals from toluene, highlighting the further versatility of the catalyst. To further explore TiO₂-generated radicals, heterogeneous laser flash photolysis techniques were then developed. Laser flash photolysis of TiO₂ suspensions is an uncommon, and underdeveloped technique in the research field. It was considered if low concentration suspensions of TiO₂ could allow for lowered impact from the absorbance and scattering from the TiO₂ particles. This allowed for monitoring the transient absorbance of a benzylic radical from the reaction between 1,1-diphenylethylene and 1,3-dioxolane solvent radicals formed by the photogenerated hole of TiO₂. The strength of this transient signal also showed dependence on the solvent, with 1,4-dioxane showing lower signal as expected from it's reactivity. This technique, with further development, should prove useful in expanding the kinetic evaluation of radicals generated by TiO₂ suspensions. Finally, Pd@TiO₂ was evaluated as a thermal catalyst for a Sonogashira-like reaction between calcium carbide and bromobenzene in DMSO under low water conditions. This palladium catalyst was effective in catalyzing the reaction; however, the more interesting aspect was in the chemistry of the calcium carbide itself. Calcium carbide is typically used for the in-situ formation of acetylene gas through the addition of water. However, it was found that in DMSO with low amounts of water, the formation of a soluble ethynyl calcium hydroxide intermediate could be selected for. This allowed for a more controlled and effective coupling with bromobenzene in solution. Further expansion on the use of this intermediate may be invaluable in expanding calcium carbide chemistry beyond the formation of acetylene gas.
52

Single-Molecule Studies of Intermolecular Kinetics Using Nano-Electronics Circuits

Froberg, James Steven January 2020 (has links)
As science and medicine advance, it becomes ever more important to be able to control and analyze smaller and smaller bioparticles all the way down to single molecules. In this dissertation several studies aimed at improving our ability to manipulate and monitor single biomolecules will be discussed. First, we will discuss a study on developing a way to map dielectrophoresis with nanoscale resolution using a novel atomic force microscopy technique. Dielectrophoresis can be applied on nanoparticles through micron-scale electrodes to separate and control said particles. Therefore, this new method of mapping this force will greatly improve our ability to manipulate single biomolecules through dielectrophoresis. The next two studies discussed will be aimed at using carbon nanotube nanocircuits to monitor single protein kinetics in real time. Drug development and delivery methods rely on the precise understanding of protein interactions, thus creating the need for information on single protein dynamics that our techniques provides. The proteins studied in these sections are MMP1 and HDAC8, both of which are known targets of anti-cancer drugs. Finally, we developed a new strategy for diagnosing pancreatic cancer. Our strategy involves using graphene nanotransistors to detect exosomes released from the pancreatic tumor. The ability to reliably diagnose pancreatic cancer before it reaches metastasis would greatly improve the life expectancy of patients who develop this condition. We were able to test our technique on samples from a number of patients and were successfully able to distinguish patients with pancreatic cancer from noncancerous patients.
53

Nanomaterials-based electrochemical sensors for health and environmental monitoring

Ali, Md Younus January 2023 (has links)
Bisphenol A (BPA), an endocrine disruptor, requires monitoring in water for health safety. Glutamate, H2O2, and glucose are vital biomarkers for various diseases. However, lab-based methods are expensive, time-consuming, and require skilled personnel, making them unsuitable for point-of-care (POC) devices. The electrochemical sensor enables POC device development. However, it suffers from low sensitivity and selectivity. This thesis focuses on the use of nanomaterials to enhance the sensitivity and selectivity of electrochemical sensors to monitor BPA in water, along with glutamate, H2O2, and glucose in bio-fluids. A BPA sensor was developed using chemically modified MWCNTs with βCD on a screen-printed carbon electrode (SPCE). The MWCNTs-βCD/SPCE exhibited high sensitivity, attributed to the catalytic activity of MWCNTs and the host-guest interaction ability of βCD. It provided a linear range (LR) of 125 nM −30 µM, with a limit of detection (LOD) of 13.76 nM (SNR = 3). We improved the performance by curing the MWCNTs-βCD/SPCE with CTAB. The sensor demonstrated a dynamic range of 500 fM to 10 μM, with a LOD of 96.5 fM, surpassing the Canada-assigned PNEC of BPA in water (0.77 nM). We fabricated a nonenzymatic glutamate sensor using CuO nanostructures and MWCNTs on SPCE. The sensor showed irreversible oxidation of glutamate involving one electron and one proton, and an LR of 20 μM−200 μM with LOD of 17.5 μM and sensitivity of 8500 μAmM−1cm−2. The sensor is promising to detect glutamate in blood. We developed a nonenzymatic glucose sensor using green synthesized gold nanoparticles and CuO-modified SPCE. The LR offered by the sensor (2 µM to 397 µM) is suitable for quantifying saliva glucose. We also created nonenzymatic H2O2 sensor by green synthesized silver nanoparticles modified SPCE which offers LR of 0.5- 161.8 µM with LOD 0.3 µM which is capable of H2O2 monitoring in urine. / Thesis / Doctor of Philosophy (PhD) / Bisphenol A (BPA) is a plastic pollutant and an endocrine-disrupting chemical that causes reproductive and neurodevelopmental disorders, and many diseases including obesity, diabetes, and cardiovascular disease. In addition, glutamate, hydrogen peroxide (H2O2), and glucose are vital biomarkers for various acute and chronic diseases. These diseases impose significant burdens on individuals, healthcare systems, and the economy. Therefore, they must be monitored. In this thesis, we developed a BPA sensor using chemically modified multiwall carbon nanotubes (MWCNTs) with β-cyclodextrin (βCD) and cetrimonium bromide (CTAB) which can detect BPA at very low concentration beyond Canada-assigned predicted-no-effect-concentrations (PNEC) of BPA. We also developed a glutamate sensor using MWCNTs and wet chemically synthesized copper oxide (CuxO) nanostructure which offers a linear range related to blood glutamate level. Moreover, we fabricated nonenzymatic H2O2 and glucose sensors using green synthesized gold (AuNPs) and silver (AgNPs) nanoparticles (using orange peel extraction as a reducing and stabilizing agent) which are useful to quantify urine H2O2 and saliva glucose respectively.
54

Carbon nanomaterials as electrical conductors in electrodes

Shukr, Delan January 2021 (has links)
In this project, different molecules have been investigated with the purpose of creating anohmic contact between metals and carbon nano materials. In particular, we considered simplemolecules connecting a graphene layer and a copper-slab. In order to determine the capability of such systems, the electronic structure was computedusing Density Functional Theory (DFT). Structural relaxation was performed in order to findcandidates where the metal and the graphene binds chemically with the hypothesis that thehybridization of the states will induce more states at the Fermi level. Six different molecularchains were tested and three of them were found to chemisorb to the graphene sheet and thecopper surface simultaneously. The electronic properties for these systems were then furtherinvestigated using the density of states (DOS). An overlap density of states (ODOS) wasdefined in order to evaluate the respective contribution of the graphene, metal and molecule. From the DOS analysis, we report that these systems did not form ohmic contacts as the resultshows too few states close to the Fermi level. The most interesting case was using a hexanolchain which had some partially overlapping states seen from the ODOS of the graphenemoleculeand graphene-Cu at the Fermi level. However, these were only small contributions.Further research is crucial in order to find a more suitable molecular chain between thegraphene and the copper for an ohmic contact.
55

Self-assembled Nanomaterials for Chemotherapeutic Applications

Shieh, Aileen January 2016 (has links)
No description available.
56

FABRICATION OF ADVANCED ELECTRODE MATERIALS FOR ELECTROCHEMICAL SUPERCAPACITOR APPLICATIONS

Poon, Ryan January 2019 (has links)
Electrochemical supercapacitors (ESs) are currently under development for electronics and automotive applications due to their hybrid properties inherited from batteries and capacitors. ESs exhibit higher power densities than batteries and energy densities than capacitors, and offer long cyclic life and rapid charge-discharge suitable for many applications. A promising candidate of electrode materials is manganese dioxide (MnO2), which has the advantages of high theoretical capacitance, low cost and environmentally friendly. However, the low electronic and ionic conductivities of MnO2 have limited its performance for practical applications. It has been demonstrated in literature that composite materials, which consist of conductive additives such as multi-walled carbon nanotubes (MWCNTs) and MnO2 can address this problem, however further investigations are required to produce ESs with superior performance for real-world applications. In this dissertation, novel colloidal fabrication techniques have been developed and advanced dispersants were employed to fabricate advanced nanocomposite electrodes. MnO2-MWCNTs composite electrode was fabricated with use of multifunctional dispersant. The multifunctional dispersant cetylpyridinium chloride (CPC) showed good dispersion of MWCNTs and capability of forming complex with the precursor of MnO2, which improved the homogeneity of the composite and generated unique morphology. The MnO2-MWCNTs composite electrode fabricated exhibited remarkable areal capacitance at high active mass loadings. New scalable fabrication technique was developed for MnO2-MWCNTs by using high solubility sodium permanganate (NaMnO4) precursor. The fabricated composite electrode showed superior performance compared to electrodes fabricated by other colloidal techniques at similar mass loading. Liquid-liquid extraction was employed to address the problem of particles agglomeration upon drying. Bio-inspired advanced extractor lauryl gallate (LG) was used for liquid-liquid extraction of particles. LG has organic catechol group allowed for strong adsorption on inorganic particles. Using LG as an advanced extractor has facilitated the transfer of particles from aqueous to organic phase to prevent agglomeration associated with drying procedure and improved mixing with MWCNTs. Advanced dispersants from bile acid salts and charged aromatic dyes families such as sodium taurodeoxychloate (TDS) and tolonium chloride (TL) were used as MWCNTs dispersants, to fabricate composite electrode with alternative metal oxides such as Mn3O4 and V2O3. Furthermore, 3,4-dihydroxybenzaldhyde (DHB) was investigated as a dispersing agent for Mn3O4 and used to fabricate Mn3O4-MWCNTs composite electrode with TL by Schiff base formation. Mn3O4 offers the advantages of small particle size compared to MnO2, and can be converted to MnO2 by electrochemical cycling to enhance capacitive performance. V2O3 was considered as an alternative to MnO2 due to its metallic conductivity at room temperature. An activation procedure has been developed, which promoted the formation of capacitive V2O5 surface layer on conductive V2O3 to increase capacitance. The advanced dispersants have shown excellent dispersion of MWCNTs in aqueous solutions at low concentrations and facilitated the formation of homogeneous composite with Mn3O4 and V2O3. Activation procedures were developed for the Mn3O4 and V2O3 composite electrodes, and the electrodes with high active mass loadings showed exceptional performance after activation. / Thesis / Doctor of Philosophy (PhD) / In modern society, the demand for clean and renewable energy have grown drastically and there is a need in development of advanced energy storage devices. Currently, the most common energy storage devices are batteries or conventional capacitors. Batteries can store a large amount of energy, however they are limited by their low power performance. Capacitors can charge and discharge rapidly, but the amount of energy stored is relatively low. Other than batteries and capacitor, electrochemical supercapacitors are emerging energy storage devices that offer the advantages of high power and energy density, fast charge-discharge and long lifetime. The objective of this work was to develop advanced nanocomposite electrode materials for electrochemical supercapacitor applications. New colloidal processing strategies have been developed and advanced dispersants were employed for the fabrication of high performance nanocomposites for electrochemical supercapacitor applications. The results presented in this work showed exceptional performances compared to literature data and paved a new way for further developments.
57

Electrochemical Carbon Dioxide Reduction for Renewable Carbonaceous Fuels and Chemicals

Han, Xue 15 March 2023 (has links)
Electrochemical CO2 reduction reaction (ECO2RR) powered by renewable electricity possesses the potential to store intermittent energy in chemical bonds while producing sustainable chemicals and fuels. Unfortunately, it is hard to achieve low overpotential, high selectivity, and activity simultaneously of ECO2RR. Developing efficient electrocatalysts is the most promising strategy to enhance electrocatalytic activity in CO2 reduction. Herein, we designed novel Bi-Cu2S heterostructures by a one-pot wet-chemistry method. The epitaxial growth of Cu2S on Bi results in abundant interfacial sites and these heterostructured nanocrystals demonstrated high electrocatalytic performance of ECO2RR with high current density, largely reduced overpotential, near-unity FE for formate production (Chapter 2). Meanwhile, we see a lot of opportunities for catalysis in a confined space due to their tunable microenvironment and active sites on the surface, leading to a broad spectrum of electrochemical conversion schemes. Herein, we reveal fundamental concepts of confined catalysis by summarizing recent experimental investigations. We mainly focus on carbon nanotubes (CNTs) encapsulated metal-based materials and summarize their applications in emerging electrochemical reactions, including ECO2RR and more (Chapter 3). Although we were able to obtain high activity and selectivity toward C1 products, it is more attractive to go beyond C1 chemicals to produce C2 products due to their high industrial value. Herein, we designed Ag-modified Cu alloy catalysts that can create a CO-rich local environment for enhancing C-C coupling on Cu for C2 formation. Moreover, Ag corporate in Cu can chemically improve the structural stability of Cu lattice. (Chapter 4) Nevertheless, advanced electrocatalytic platforms cannot be developed without a fundamental understanding of binding configurations of the surface-adsorbed intermediates and adsorbate-adsorbate interaction on the local environment in electrochemical CO2 reduction. In this case, we make discussions of recent developments of machine learning based models of adsorbate-adsorbate interactions, including the oversimplified linear analytic relationships, the cluster expansion models parameterized by machine learning algorithms, and the highly nonlinear deep learning models. We also discuss the challenges of the field, particularly overcoming the limitations of pure data driven models with the integration of computational theory and machine learning of lateral interactions for catalyst materials design. (Chapter 5). / Doctor of Philosophy / Excessive CO2 emissions into the atmosphere have had severe environmental impacts and pose an urgent and potentially irreversible threat to human activity. Fossil fuels, including coal, oil, and natural gas, have continued to play a dominant role in the global energy system. However, fossil fuels produce substantial greenhouse gases, which are the main contributor to global warming. This year, the global average CO2 level is increasing to 413.6 parts per million, higher than at any point in the past hundred years. To address this global warming issue, we see lots of opportunities to use alternative energy sources to convert atmospheric CO2 into value-added products through the electrochemical reduction of CO2. Nevertheless, advanced electrocatalytic platforms cannot be developed without efficient electrocatalysts in the reaction system. Therefore, we have been working on the design of catalysts with various features that improve the electrochemical reduction of CO2. The interface plays an important role as the reactions are happening at the active sites which mostly locate at the interface of electrocatalysts. We designed a novel Bi-Cu2S hetero-structured catalyst, which has abundant interfacial sites between Bi and Cu2S, demonstrating the improved catalytic performance of ECO2RR toward formate production (Chapter 2). Catalysis in a confined space offers another opportunity for tuning the catalytic performance, where carbon nanotubes (CNTs) encapsulated metal-based materials have been shown to increase the reactivity of electrochemical reactions, including ECO2RR and more (Chapter 3). Interfaces in alloys provide multifunctional environments which have been shown to have reactivity toward complicated reactions. To produce more value-added C2 chemicals, Ag-modified Cu alloy catalysts are developed, which can create a CO-rich local environment for enhancing C-C coupling on Cu to enhance C2 formation (Chapter 4). To develop advanced electrocatalytic platforms for CO2 electroreduction, it is essential to have a fundamental understanding of the binding configurations of surface-adsorbed intermediates and the adsorbate-adsorbate interaction within the local environment. In this regard, we discussed recent developments in machine learning-based models of adsorbate-adsorbate interactions for multiple electrochemical reactions (Chapter 5).
58

THE EFFECTS OF MANUFACTURED NANOMATERIAL TRANSFORMATIONS ON BIOAVAILABILITY, TOXICITY AND TRANSCRIPTOMIC RESPONSES OF <em>CAENORHABDITIS ELEGANS</em>

Starnes, Daniel L. 01 January 2016 (has links)
In recent decades, there has been a rapid expansion in the use of manufactured nanoparticles (MNPs). Experimental evidence and material flow models predict that MNPs enter wastewater treatment plants and partition to sewage sludge and majority of that sludge is land applied as biosolids. During wastewater treatment and after land application, MNPs undergo biogeochemical transformations (aging). The primary transformation process for silver MNPs (Ag-MNPs) is sulfidation, while zinc oxide MNPs (ZnO-MNPs) most likely undergo phosphatation and sulfidation. Our overall goal was to assess bioavailability and toxicogenomic impacts of both pristine, defined as-synthesized, and aged Ag- and ZnO-MNPs, as well as their respective ions, to a model organism, the soil nematode Caenorhabditis elegans. We first investigated the toxicity of pristine Ag-MNPs, sulfidized Ag-MNPs (sAg-MNPs), and AgNO3 to identify the most sensitive ecologically relevant endpoint in C. elegans. We identified reproduction as the most sensitive endpoint for all treatments with sAg-MNPs being about 10-fold less toxic than pristine Ag-MNPs. Using synchrotron x-ray microspectroscopy we demonstrated that AgNO3 and pristine Ag-MNPs had similar bioavailability while aged sAg-MNPs caused toxicity without being taken up by C. elegans. Comparisons of the genomic impacts of both MNPs revealed that Ag-MNPs and sAg-MNPs have transcriptomic profiles distinct from each other and from AgNO3. The toxicity mechanisms of sAg-MNPs are possibly associated with damaging effects to cuticle. We also investigated the effects pristine zinc oxide MNPs (ZnO-MNPs) and aged ZnO-MNPs, including phosphatated (pZnO-MNPs) and sulfidized (sZnO-MNPs), as well as ZnSO4 have on C. elegans using a toxicogenomic approach. Aging of ZnO-MNPs reduced toxicity nearly 10-fold. Toxicity of pristine ZnO-MNPs was similar to the toxicity caused by ZnSO4 but less than 30% of responding genes was shared between these two treatments. This suggests that some of the effects of pristine ZnO-MNPs are also particle-specific. The genomic results showed that based on Gene Ontology and induced biological pathways all MNP treatments shared more similarities than any MNP treatment did with ZnSO4. This dissertation demonstrates that the toxicity of Ag- and ZnO-MNPs to C. elegans is reduced and operates through different mechanisms after transformation during the wastewater treatment process.
59

Low temperature fabrication of one-dimensional nanostructures and their potential application in gas sensors and biosensors

Gabrielyan, Nare January 2013 (has links)
Nanomaterials are the heart of nanoscience and nanotechnology. Research into nanostructures has been vastly expanding worldwide and their application spreading into numerous branches of science and technology. The incorporation of these materials in commercial products is revolutionising the current technological market. Nanomaterials have gained such enormous universal attention due to their unusual properties, arising from their size in comparison to their bulk counterparts. These nanosized structures have found applications in major devices currently under development including fuel cells, computer chips, memory devices, solar cells and sensors. Due to their aforementioned importance nanostructures of various materials and structures are being actively produced and investigated by numerous research groups around the world. In order to meet the market needs the commercialisation of nanomaterials requires nanomaterial fabrication mechanisms that will employ cheap, easy and low temperature fabrication methods combined with environmentally friendly technologies. This thesis investigates low temperature growth of various one-dimensional nanostructures for their potential application in chemical sensors. It proposes and demonstrates novel materials that can be applied as catalysts for nanomaterial growth. In the present work, zinc oxide (ZnO) and silicon (Si) based nanostructures have been fabricated using low temperature growth methods including hydrothermal growth for ZnO nanowires and plasma-enhanced chemical vapour deposition (PECVD) technique for Si nanostructures. The structural, optical and electrical properties of these materials have been investigated using various characterisation techniques. After optimising the growth of these nanostructures, gas and biosensors have been fabricated based on Si and ZnO nanostructures respectively in order to demonstrate their potential in chemical sensors. For the first time, in this thesis, a new group of materials have been investigated for the catalytic growth of Si nanostructures. Interesting growth observations have been made and theory of the growth mechanism proposed. The lowest growth temperature in the published literature is also demonstrated for the fabrication of Si nanowires via the PECVD technique. Systematic studies were carried out in order to optimise the growth conditions of ZnO and Si nanostructures for the production of uniformly shaped nanostructures with consistent distribution across the substrate. v The surface structure and distribution of the variously shaped nanostructures has been analysed via scanning electron microscopy. In addition, the crystallinity of these materials has been investigating using Raman and X-ray diffraction spectroscopies and transmission electron microscopy. In addition to the fabrication of these one-dimensional nanomaterials, their potential application in the chemical sensors has been tested via production of a glucose biosensor and an isopropyl alcohol vapour gas sensor based on ZnO and Si nanostructures respectively. The operation of the devices as sensors has been demonstrated and the mechanisms explored.
60

Nanomateriais luminomagnéticos visando aplicações biológicas: síntese, propriedades, funcionalização e estabilidade coloidal / LUMINOMAGNETIC NANOMATERIALS FOR BIOLOGICAL APPLICATIONS: SYNTHESIS, PROPERTIES, FUNCTIONALIZATION AND COLLOIDAL STABILITY

Souza, Caio Guilherme Secco de 10 April 2015 (has links)
Neste trabalho, foi realizado um estudo da obtenção de nanomateriais luminomagnéticos visando potenciais aplicações biológicas, a partir de dois diferentes tipos de estruturas, sendo elas: a formação de heteronanoestruturas luminomagnéticas de NPM de FePt/Fe3O4-CdSe recobertas com sílica; e a formação de nanomateriais luminomagnéticos por ligação covalente entre NPM de FePt/Fe3O4-Dopa-PIMA-PEG-NH2 e pontos quânticos de CdSe/ZnS-LA-PEG-COOH. Para o primeiro tipo de nanomaterial citado, foram testadas duas metodologias para obtenção das heteronanoestruturas: a mudança da estabilidade coloidal pela adição de pequenas quantidades de NaCl no meio contendo as NPM e os pontos quânticos previamente sintetizados; e o método de injeção a quente do precursor de selênio em um meio contendo as NPM como sementes, o precursor de cádmio e os agentes de superfície. O método de injeção a quente foi o que apresentou melhores condições para a formação das heteronanoestruturas. Para providenciar estabilidade coloidal em meio aquoso e superfície com biocompatibilidade, foi realizado o recobrimento com sílica na superfície das heteronanoestruturas luminomagnéticas com melhores condições. Para essa amostra, o tamanho médio obtido foi de 25,0 nm, com polidispersividade de 8,4 %, Ms = 11,1 emu.g-1 e comportamento superparamagnético, além de duas bandas de emissão (com excitação de 400 nm) centradas em 452 nm e 472 nm, respectivamente. Já para o segundo tipo de nanomaterial obtido neste trabalho, foram primeiramente obtidas NPM de FePt/Fe3O4 pelo método do poliol modificado acoplado à metodologia do crescimento, e pontos quânticos luminescentes de CdSe/ZnS pelo método de decomposição térmica de precursores organometálicos, sendo que ambas nanoestruturas apresentaram superfície hidrofóbica. Para a troca de ligantes para transferência das nanoestruturas para a fase aquosa e para providenciar biocompatibilidade visando aplicações biológicas, foram previamente preparados ligantes poliméricos de Dopa-PIMA-PEG-NH2 para recobrimento das NPM e de LA-PEG-COOH para recobrimento dos pontos quânticos. A conjugação química entre as nanoestruturas de FePt/Fe3O4-Dopa-PIMA-PEG-NH2 e CdSe/ZnS-LA-PEG-COOH foi realizada pelo método da carbodiimida em solução aquosa para a formação de uma ligação covalente amida entre os grupos amina e carboxilato em cada uma das nanoestruturas. Os nanomateriais luminomagnéticos obtidos apresentaram estabilidade coloidal em meio aquoso, com estreita distribuição de tamanho, apresentando RH de 79,96 nm, Ms de, aproximadamente, 10 emu.g-1 com coercividade e remanência quase nulos e intensa banda de emissão centrada em 580 nm. Espera-se que os nanomateriais obtidos neste trabalho possam ser promissores nanomateriais com propriedades multifuncionais para potenciais aplicações biológicas. / Here, luminomagnetic nanomaterials were obtained for potential biological applications. We have studied two different types of luminomagnetic nanomaterials, which are: formation of silica-coated FePt/Fe3O4-CdSe heteronanostructures; and formation of luminomagnetic nanomaterials from covalent bond between FePt/Fe3O4-Dopa-PIMA-PEG-NH2 magnetic nanoparticles and CdSe/ZnS-LA-PEG-COOH luminescent quantum dots. For the first type of luminomagnetic nanomaterials obtained, two methodologies were studied for formation of heteronanostructures, which are: modification of colloidal stability by addition of small amounts of NaCl into a solution with hydrophobic magnetic nanoparticles and luminescent quantum dots; and hot injection method of selenium precursor into a solution with magnetic nanoparticles seeds, cadmium precursors and surface agents. The hot injection method obtained better results than the other method studied for formation of heteronanostructures. To provide colloidal stability in aqueous solution and biocompatibility, the heteronanostructures were coated using silica shell. After silica coating, the heteronanostructures showed average diameter of 25 nm and polidispersivity of 8.4%, with Ms = 11.1 emu.g-1 and superparamagnetic behavior. Moreover, these nanomaterials showed two emission peaks centered at 452 and 472 nm. For the second type of nanomaterials obtained, FePt/Fe3O4 magnetic nanoparticles were synthesized by modified polyol method coupled to seeded-mediated growth, and CdSe/ZnS luminescent quantum dots were obtained by thermal decomposition of organometallic precursors. For the ligand exchange to transfer the nanostructures from organic media to aqueous solution, were used Dopa-PIMA-PEG-NH2 and LA-PEG-COOH polymers to provide colloidal stability and biocompatibility on magnetic nanoparticle surface and quantum dot surface, respectively. The chemical conjugation between FePt/Fe3O4-Dopa-PIMA-PEG-NH2 and CdSe/ZnS-LA-PEG-COOH nanostructures was obtained by EDC coupling in aqueous solution, which linked amine and carboxylate groups in each nanostructure to provide the formation of amide bond. The luminomagnetic nanomaterials obtained showed colloidal stability in aqueous solution, narrow size distribution, with RH equal to 79.96 nm, MS around 10 emu.g-1 with low coercivity and remanent magnetization, and intense emission peak centered at 580 nm. We expect these luminomagnetic nanomaterials be promisor nanomaterials with multifunctional properties for potential biological applications.

Page generated in 0.0944 seconds