• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Selective Interfacial Interaction between Diblock Copolymers and Cobalt Nanoparticles

David, Kasi 20 November 2006 (has links)
In order to optimize the synthesis of metal nanoparticle-polymer systems, there are certain processes which must be understood. Perhaps the most important one is the selective interfacial interaction between the block copolymer and the growing metal nanoparticles. To investigate this interaction, four different approaches were taken. The first approach looked at the strength of interaction between the competing blocks of the copolymer and the metal nanoparticles surface. The second approach looked at the effect of polymer architecture on the metal nanoclusters. The third approach looked at the polymer composition and solvent effects on the phase behavior of the metal nanocluster-block copolymer nanocomposite. Finally, the influence of the metal precursor on the rate of the decomposition was examined. It was found that adsorbed layers of PS on the cobalt nanoparticles are completely displaced by PMMA when the solvent is a common good solvent. An adsorbed layer of only PMMA is also obtained through competitive adsorption from a common good solvent. However, in a selective solvent that is poor for PS, sequential adsorption leads to the formation of mixed layers. In homopolymer solutions, the cluster size reaches a minimum at a finite chain MW. In the case of diblock copolymers, the only parameter (for a fixed copolymer concentration) controlling the cluster size in suspensions of di-block copolymers is the molecular weight of one block, in this case PMMA, and is indifferent to other parameters including the molecular weight of the other block (PS) or the solvent quality. It was also found that the spatial distribution of the metal clusters synthesized in-situ coincided with the morphology dictated by thermodynamically-driven microdomain structure of the block copolymer. Moreover, the overall final morphology of the nanocomposite is locked into place while in solution, and fast solvent evaporation does not cause this morphology to change. Finally, results showed that the rate of nanocomposite synthesis occurred faster in the PS suspensions compared to PMMA, indicating that chemical bonds between PMMA and the cobalt nanoclusters slowed the thermal decomposition of the metal precursor. So the PMMA chains provided sites for nucleation, but did not necessarily aid particle growth.
2

Estudo da influência do solvente orgânico e do fluxo de injeção no controle de tamanho de nanocápsulas de núcleo lipídico preparadas através do método de deslocamento de solvente

Klein, Alana Carina January 2013 (has links)
O fluxo de injeção e o solvente orgânico, utilizado no preparo de nanoesferas poliméricas, são parâmetros experimentais que controlam o diâmetro e a distribuição de diâmetro das nanopartículas, formadas pelo processo conhecido como nucleação. Considerando as nanocápsulas de núcleo lipídico, formadas pelo processo de auto-organização, estes parâmetros experimentais ainda não foram explorados. Assim, esse trabalho propõe avaliar o fluxo de injeção e o solvente orgânico na preparação destas suspensões aquosas, caracterizando físicoquimicamente estes sistemas. Para variação de fluxo de injeção, utilizou-se uma bomba peristáltica, sendo possível a avaliação dos seguintes fluxos: 5, 8, 12, 15, 21 e 38 mL min¯¹. O diâmetro das nanocápsulas diminuiu de 256±9 nm a 127 ±8 nm pela técnica de difração de laser e 220±9 nm a 124±13 nm, segundo a técnica de espectroscopia de correlação de fótons. Os solventes orgânicos avaliados foram a acetona, acetonitrila e 1,4-Dioxano. Observou-se que a acetonitrila se mostrou adequada para a condição previamente otimizada com acetona, ao passo que o 1,4-Dioxano apresentou um pico micrométrico em sua distribuição. Assim, foi possível modelar este estudo através de um fatorial de design 2², onde têm-se dois fatores, fluxo de injeção e solvente orgânico, em dois níveis, nos fluxos de 5 e 38 mL min¯¹ e considerando os solventes acetona e acetonitrila. Como resultado, viu-se que o fluxo de injeção é o parâmetro de maior influência na preparação destas suspensões aquosas, se comparado ao solvente orgânico selecionado. Para elucidar o papel do solvente orgânico na preparação destes sistemas, calculouse os parâmetros de solubilidade e os coeficientes de difusão solvente orgânico\água e água\solvente orgânico para os três pares avaliados neste trabalho. Viu-se que os parâmetros de solubilidade e os coeficientes de difusão solvente orgânico\água explicam a não variação do diâmetro de partícula em função do solvente orgânico. Ainda, realizou-se um estudo de viscosidade, em função do log [PCL], para fases orgânicas preparadas com acetonitrila e 1,4- dioxano. Obteve-se o valor de 2,30 mg mL¯¹ para a concentração de agregação crítica quando utilizado o 1,4-Dioxano e 10,47 mg mL¯¹ para a fase orgânica preparada com acetonitrila. Então, pode-se dizer que este valor elevado encontrado para a acetonitrila é uma vantagem de sua utilização, uma vez que as características nanoscópicas são mantidas e um maior número de partículas pode ser formado. / Flow rate and organic solvent, used to prepare polimeric nanospheres, are experimental parameters that control the size and the size distribution curves of these nanoparticles, formed by particle nucleation. Considering the lipid core nanocapsules, formed by self-assembled process, these experimental parameters are not evaluated yet. Considering those, this work proposes to evaluate the flow rate and the organic solvent in the preparation of these aqueous suspensions, characterizing them physicochemically. To change the flow rate, it was used a peristaltic pump, it being possible to evaluate the following flows: 5, 12, 15, 21 and 38 mL min‾¹. The nanocapsules diameters decreased from 256±9 nm to 127 ±8 nm, by laser difratometry and 220±9 nm to 124±13 nm, by the photon correlation spectroscopy technique. The organic solvents evaluated were acetone, acetonitrle and 1,4-dioxane. It was observed that the acetonitrile was adequate for the condition previously optimized with acetone, whereas in the 1,4-dioxane distribution apears a micrometric peak. So, it was possible to modelate this study by a 2² factorial design, two factors, flow rate and organic solvent, in two levels, 5 and 38 mL min‾¹, considering acetone and acetonitrile. As a result, it was seen that the flow rate is the most influential parameter in the preparation of aqueous suspensions, compared to organic solvent selected. To elucidate the role of organic solvent in these systems, it was calculated the solubility parameter and the diffusion coefficients organic solvent/water and water/organic solvent to the three pairs evaluated in this work. It was seen that the solubility parameter and diffusion coefficient organic solvent/water explain the same diameter of the nanocapsules, even the change on the organic solvent. Even so, it was done a viscosity study, as a function of log [PCL], to organic phases prepared with acetonitrile and 1,4-dioxane. It was obtained a value of 2,30 mg mL‾¹ to the critical aggregation concentration to the 1,4-dioxane solvent, and the value of 10,47 mg mL‾¹ to the acetonitrile solvent. So, it can be said that this high value found for acetonitrile is an advantage in its use, since the nanoscopic characteristics are maintained and a larger number of nanoparticles can be formed.
3

Structured Materials for Catalytic and Sensing Applications

Hokenek, Selma 01 January 2013 (has links)
The optical and chemical properties of the materials used in catalytic and sensing applications directly determine the characteristics of the resultant catalyst or sensor. It is well known that a catalyst needs to have high activity, selectivity, and stability to be viable in an industrial setting. The hydrogenation activity of palladium catalysts is known to be excellent, but the industrial applications are limited by the cost of obtaining catalyst in amounts large enough to make their use economical. As a result, alloying palladium with a cheaper, more widely available metal while maintaining the high catalytic activity seen in monometallic catalysts is, therefore, an attractive option. Similarly, the optical properties of nanoscale materials used for sensing must be attuned to their application. By adjusting the shape and composition of nanoparticles used in such applications, very fine changes can be made to the frequency of light that they absorb most efficiently. The design, synthesis, and characterization of (i) size controlled monometallic palladium nanoparticles for catalytic applications, (ii) nickel-palladium bimetallic nanoparticles and (iii) silver-palladium nanoparticles with applications in drug detection and biosensing through surface plasmon resonance, respectively, will be discussed. The composition, size, and shape of the nanoparticles formed were controlled through the use of wet chemistry techniques. After synthesis, the nanoparticles were analyzed using physical and chemical characterization techniques such as X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and Scanning Transmission Electron Microscopy- Energy-Dispersive Spectrometry (STEM-EDX). The Pd and Ni-Pd nanoparticles were then supported on silica for catalytic testing using mass spectrometry. The optical properties of the Ag-Pd nanoparticles in suspension were further investigated using ultraviolet-visible spectrometry (UV-Vis). Monometallic palladium particles have been synthesized and characterized to establish the effects of nanoparticle size on catalytic activity in methanol decomposition. The physicochemical properties of the synthesized palladium-nickel nanoparticles will be discussed, as a function of the synthesis parameters. The optical characteristics of the Ag and Pd nanoparticles will be determined, with a view toward tuning the response of the nanoparticles for incorporation in sensors. Analysis of the monometallic palladium particles revealed a dependence of syngas production on nanoparticle size. The peak and steady state TOFs increased roughly linearly with the average nanoparticle diameter. The amount of coke deposited on the particle surfaces was found to be independent on the size of the nanoparticles. Shape control of the nickel-palladium nanoparticles with a high selectivity for (100) and (110) facets (≤ 80%) has been demonstrated. The resulting alloy nanoparticles were found to have homogeneous composition throughout their volume and maintain FCC crystal structure. Substitution of Ni atoms in the Pd lattice at a 1:3 molar ratio was found to induce lattice strains of ~1%. The Ag nanocubes synthesized exhibited behavior very similar to literature values, when taken on their own, exhibiting a pair of distinct absorbance peaks at 350 nm and 455 nm. In physical mixtures with the Pd nanoparticles synthesized, their behavior showed that the peak position of the Ag nanocubes' absorbance in UV-Vis could be tuned based on the relative proportions of the Ag and Pd nanoparticles present in the suspension analysed. The Ag polyhedra synthesized for comparison showed a broad doublet peak throughout the majority of the visible range before testing as a component in a physical mixture with the Pd nanoparticles. The addition of Pd nanoparticles to form a physical mixture resulted in some damping of the doublet peak observed as well as a corresponding shift in the baseline absorbance proportional to the amount of Pd added to the mixture.
4

Estudo da influência do solvente orgânico e do fluxo de injeção no controle de tamanho de nanocápsulas de núcleo lipídico preparadas através do método de deslocamento de solvente

Klein, Alana Carina January 2013 (has links)
O fluxo de injeção e o solvente orgânico, utilizado no preparo de nanoesferas poliméricas, são parâmetros experimentais que controlam o diâmetro e a distribuição de diâmetro das nanopartículas, formadas pelo processo conhecido como nucleação. Considerando as nanocápsulas de núcleo lipídico, formadas pelo processo de auto-organização, estes parâmetros experimentais ainda não foram explorados. Assim, esse trabalho propõe avaliar o fluxo de injeção e o solvente orgânico na preparação destas suspensões aquosas, caracterizando físicoquimicamente estes sistemas. Para variação de fluxo de injeção, utilizou-se uma bomba peristáltica, sendo possível a avaliação dos seguintes fluxos: 5, 8, 12, 15, 21 e 38 mL min¯¹. O diâmetro das nanocápsulas diminuiu de 256±9 nm a 127 ±8 nm pela técnica de difração de laser e 220±9 nm a 124±13 nm, segundo a técnica de espectroscopia de correlação de fótons. Os solventes orgânicos avaliados foram a acetona, acetonitrila e 1,4-Dioxano. Observou-se que a acetonitrila se mostrou adequada para a condição previamente otimizada com acetona, ao passo que o 1,4-Dioxano apresentou um pico micrométrico em sua distribuição. Assim, foi possível modelar este estudo através de um fatorial de design 2², onde têm-se dois fatores, fluxo de injeção e solvente orgânico, em dois níveis, nos fluxos de 5 e 38 mL min¯¹ e considerando os solventes acetona e acetonitrila. Como resultado, viu-se que o fluxo de injeção é o parâmetro de maior influência na preparação destas suspensões aquosas, se comparado ao solvente orgânico selecionado. Para elucidar o papel do solvente orgânico na preparação destes sistemas, calculouse os parâmetros de solubilidade e os coeficientes de difusão solvente orgânico\água e água\solvente orgânico para os três pares avaliados neste trabalho. Viu-se que os parâmetros de solubilidade e os coeficientes de difusão solvente orgânico\água explicam a não variação do diâmetro de partícula em função do solvente orgânico. Ainda, realizou-se um estudo de viscosidade, em função do log [PCL], para fases orgânicas preparadas com acetonitrila e 1,4- dioxano. Obteve-se o valor de 2,30 mg mL¯¹ para a concentração de agregação crítica quando utilizado o 1,4-Dioxano e 10,47 mg mL¯¹ para a fase orgânica preparada com acetonitrila. Então, pode-se dizer que este valor elevado encontrado para a acetonitrila é uma vantagem de sua utilização, uma vez que as características nanoscópicas são mantidas e um maior número de partículas pode ser formado. / Flow rate and organic solvent, used to prepare polimeric nanospheres, are experimental parameters that control the size and the size distribution curves of these nanoparticles, formed by particle nucleation. Considering the lipid core nanocapsules, formed by self-assembled process, these experimental parameters are not evaluated yet. Considering those, this work proposes to evaluate the flow rate and the organic solvent in the preparation of these aqueous suspensions, characterizing them physicochemically. To change the flow rate, it was used a peristaltic pump, it being possible to evaluate the following flows: 5, 12, 15, 21 and 38 mL min‾¹. The nanocapsules diameters decreased from 256±9 nm to 127 ±8 nm, by laser difratometry and 220±9 nm to 124±13 nm, by the photon correlation spectroscopy technique. The organic solvents evaluated were acetone, acetonitrle and 1,4-dioxane. It was observed that the acetonitrile was adequate for the condition previously optimized with acetone, whereas in the 1,4-dioxane distribution apears a micrometric peak. So, it was possible to modelate this study by a 2² factorial design, two factors, flow rate and organic solvent, in two levels, 5 and 38 mL min‾¹, considering acetone and acetonitrile. As a result, it was seen that the flow rate is the most influential parameter in the preparation of aqueous suspensions, compared to organic solvent selected. To elucidate the role of organic solvent in these systems, it was calculated the solubility parameter and the diffusion coefficients organic solvent/water and water/organic solvent to the three pairs evaluated in this work. It was seen that the solubility parameter and diffusion coefficient organic solvent/water explain the same diameter of the nanocapsules, even the change on the organic solvent. Even so, it was done a viscosity study, as a function of log [PCL], to organic phases prepared with acetonitrile and 1,4-dioxane. It was obtained a value of 2,30 mg mL‾¹ to the critical aggregation concentration to the 1,4-dioxane solvent, and the value of 10,47 mg mL‾¹ to the acetonitrile solvent. So, it can be said that this high value found for acetonitrile is an advantage in its use, since the nanoscopic characteristics are maintained and a larger number of nanoparticles can be formed.
5

Estudo da influência do solvente orgânico e do fluxo de injeção no controle de tamanho de nanocápsulas de núcleo lipídico preparadas através do método de deslocamento de solvente

Klein, Alana Carina January 2013 (has links)
O fluxo de injeção e o solvente orgânico, utilizado no preparo de nanoesferas poliméricas, são parâmetros experimentais que controlam o diâmetro e a distribuição de diâmetro das nanopartículas, formadas pelo processo conhecido como nucleação. Considerando as nanocápsulas de núcleo lipídico, formadas pelo processo de auto-organização, estes parâmetros experimentais ainda não foram explorados. Assim, esse trabalho propõe avaliar o fluxo de injeção e o solvente orgânico na preparação destas suspensões aquosas, caracterizando físicoquimicamente estes sistemas. Para variação de fluxo de injeção, utilizou-se uma bomba peristáltica, sendo possível a avaliação dos seguintes fluxos: 5, 8, 12, 15, 21 e 38 mL min¯¹. O diâmetro das nanocápsulas diminuiu de 256±9 nm a 127 ±8 nm pela técnica de difração de laser e 220±9 nm a 124±13 nm, segundo a técnica de espectroscopia de correlação de fótons. Os solventes orgânicos avaliados foram a acetona, acetonitrila e 1,4-Dioxano. Observou-se que a acetonitrila se mostrou adequada para a condição previamente otimizada com acetona, ao passo que o 1,4-Dioxano apresentou um pico micrométrico em sua distribuição. Assim, foi possível modelar este estudo através de um fatorial de design 2², onde têm-se dois fatores, fluxo de injeção e solvente orgânico, em dois níveis, nos fluxos de 5 e 38 mL min¯¹ e considerando os solventes acetona e acetonitrila. Como resultado, viu-se que o fluxo de injeção é o parâmetro de maior influência na preparação destas suspensões aquosas, se comparado ao solvente orgânico selecionado. Para elucidar o papel do solvente orgânico na preparação destes sistemas, calculouse os parâmetros de solubilidade e os coeficientes de difusão solvente orgânico\água e água\solvente orgânico para os três pares avaliados neste trabalho. Viu-se que os parâmetros de solubilidade e os coeficientes de difusão solvente orgânico\água explicam a não variação do diâmetro de partícula em função do solvente orgânico. Ainda, realizou-se um estudo de viscosidade, em função do log [PCL], para fases orgânicas preparadas com acetonitrila e 1,4- dioxano. Obteve-se o valor de 2,30 mg mL¯¹ para a concentração de agregação crítica quando utilizado o 1,4-Dioxano e 10,47 mg mL¯¹ para a fase orgânica preparada com acetonitrila. Então, pode-se dizer que este valor elevado encontrado para a acetonitrila é uma vantagem de sua utilização, uma vez que as características nanoscópicas são mantidas e um maior número de partículas pode ser formado. / Flow rate and organic solvent, used to prepare polimeric nanospheres, are experimental parameters that control the size and the size distribution curves of these nanoparticles, formed by particle nucleation. Considering the lipid core nanocapsules, formed by self-assembled process, these experimental parameters are not evaluated yet. Considering those, this work proposes to evaluate the flow rate and the organic solvent in the preparation of these aqueous suspensions, characterizing them physicochemically. To change the flow rate, it was used a peristaltic pump, it being possible to evaluate the following flows: 5, 12, 15, 21 and 38 mL min‾¹. The nanocapsules diameters decreased from 256±9 nm to 127 ±8 nm, by laser difratometry and 220±9 nm to 124±13 nm, by the photon correlation spectroscopy technique. The organic solvents evaluated were acetone, acetonitrle and 1,4-dioxane. It was observed that the acetonitrile was adequate for the condition previously optimized with acetone, whereas in the 1,4-dioxane distribution apears a micrometric peak. So, it was possible to modelate this study by a 2² factorial design, two factors, flow rate and organic solvent, in two levels, 5 and 38 mL min‾¹, considering acetone and acetonitrile. As a result, it was seen that the flow rate is the most influential parameter in the preparation of aqueous suspensions, compared to organic solvent selected. To elucidate the role of organic solvent in these systems, it was calculated the solubility parameter and the diffusion coefficients organic solvent/water and water/organic solvent to the three pairs evaluated in this work. It was seen that the solubility parameter and diffusion coefficient organic solvent/water explain the same diameter of the nanocapsules, even the change on the organic solvent. Even so, it was done a viscosity study, as a function of log [PCL], to organic phases prepared with acetonitrile and 1,4-dioxane. It was obtained a value of 2,30 mg mL‾¹ to the critical aggregation concentration to the 1,4-dioxane solvent, and the value of 10,47 mg mL‾¹ to the acetonitrile solvent. So, it can be said that this high value found for acetonitrile is an advantage in its use, since the nanoscopic characteristics are maintained and a larger number of nanoparticles can be formed.
6

The Effect of Particle Size and Shape on the In Vivo Journey of Nanoparticles

Toy, Randall 12 June 2014 (has links)
No description available.

Page generated in 0.0654 seconds