• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthese hierarchisch poröser Kohlenstoffmaterialien durch Carbochlorierung

Leifert, Winfried 18 July 2017 (has links) (PDF)
Poröse Kohlenstoffmaterialien zeichnen sich durch hohe spezifische Oberflächen und Porenvolumina, eine gute elektrische Leitfähigkeit sowie hohe mechanische und chemische Stabilität aus. Sie werden in Anwendungen wie der Gasspeicherung oder der elektrochemischen Energiespeicherung eingesetzt. Besondere Aufmerksamkeit erfährt momentan die Energiespeicherung, unter anderem durch die fortschreitende Verbreitung der Elektromobilität. Als besonders effizient haben sich elektrochemische Energiespeichermaterialien, zum Beispiel für Doppelschichtkondensatoren (EDLCs) und Batterien, herausgestellt. Ein vielversprechendes Batteriesystem ist die Lithium-Schwefel-Batterie (LiS-Batterie). Mit diesem System können wesentlich höhere gravimetrische Energiedichten als mit Lithium-Ionen-Batterien erreicht werden. Poröser Kohlenstoff stellt aufgrund der hohen Porosität, der guten elektrischen Leitfähigkeit und der chemischen Beständigkeit ein ideales Elektrodenmaterial für die Anwendung sowohl in EDLCs als auch in LiS-Batterien dar. Bei den im industriellen Maßstab am häufigsten eingesetzten Aktivkohlen ist nachteilig, dass während der Synthese nur begrenzte Kontrolle über das Porensystem vorhanden ist. Zudem sind die Poren oft flaschenhalsartig, was zu einer schlechten Zugänglichkeit des Porensystems führt und dadurch den Stofftransport limitiert. Eine verbesserte Kontrolle über das Porennetzwerk bieten das Templatverfahren oder die Synthese von Kohlenstoffen aus Carbiden. Diese Methoden ermöglichen es zudem, Poren unterschiedlicher Größe, das heißt, ein hierarchisches Porensystem, einzubringen. Dies ist vorteilhaft für Prozesse, in denen sowohl eine hohe Adsorptionskapazität als auch ein schneller Stofftransport notwendig sind. Die meisten dieser Synthesen haben die Nachteile, dass sie komplex sind und viel Abfall produzieren. Eine vergleichbar neue Methode zur Herstellung von hierarchischen Kohlenstoffen ist die Synthese von Kroll-Kohlenstoffen über eine reduktive Carbochlorierung. Dieses Verfahren ist dem Schlüsselschritt des Kroll-Prozesses zur Herstellung von Titan nachempfunden. Dafür werden oxidische Nanopartikel mit Kohlenstoff beschichtet und durch Behandlung mit heißem Chlorgas in Kohlenstoff überführt. Diese Synthese ermöglicht neben der Kontrolle der Mesoporengröße über die Größe der Nanopartikel gleichzeitig die Einbringung von Mikroporen durch das Ätzen von Kohlenstoff während der Carbochlorierung, sodass in wenigen Syntheseschritten ein hierarchisches Porensystem generiert werden kann. In dieser Arbeit wurde untersucht, ob sich der Ansatz der Carbochlorierung auf weitere Systeme übertragen lässt. Durch postsynthetische Aktivierung wurde die Porosität von Kroll-Kohlenstoff unter Erhalt der Porenstruktur gesteigert. So war es möglich, Kohlenstoffe mit spezifischen Oberflächen von mehr als 2700 m²/g und Porenvolumina von 3 cm³/g zu synthetisieren. Die Mesoporenstruktur konnte aufrechterhalten werden, während sowohl der Anteil von Meso- als auch Mikroporen erhöht werden konnte. Aktivierter Kroll-Kohlenstoff wurde in EDLCs als Elektrodenmaterial untersucht. Mit 1 M Schwefelsäure als Elektrolyt konnten spezifische Kapazitäten von 160 F/g über galvanostatische Lade-/Entlademessungen erreicht werden, wobei bei hohen Lade-/Entladeströmen von 10 A/g noch 87 % der Maximalkapazität abgerufen werden konnten. Weiterhin wurde der Frage nachgegangen, ob mittels Carbochlorierung geordnete mesoporöse Kohlenstoffe synthetisiert werden können. Dafür wurden sowohl Harttemplat- als auch Weichtemplatmethoden eingesetzt. Im Harttemplatverfahren war es möglich, geordneten mesoporösen Kohlenstoff DUT-118 zu synthetisieren.7 DUT-118 weist eine höhere spezifische Oberfläche und ein höheres Porenvolumen im Vergleich zu Kohlenstoff auf, der über das klassische „Nanocasting“ hergestellt wird. Durch die Carbochlorierung kann zudem der Mikroporenanteil des Materials im Vergleich zur klassischen Templatentfernung gesteigert werden, was durch Präadsorptionsexperimente mit n-Nonan nachgewiesen wurde. In einer weichtemplatgestützten Synthese konnte geordneter mesoporöser Kohlenstoff DUT-119 aus Oxid/Kohlenstoff-Kompositen mittels Carbochlorierung synthetisiert werden. DUT-119 verfügt über eine spezifische Oberfläche von über 2200 m²/g, ein Porenvolumen von mehr als 2 cm³/g und ein hierarchisches Porensystem. Aufgrund des hierarchischen Mikro-/Mesoporensystems ist DUT-119 hervorragend als Kathodenmatrix in LiS-Batterien geeignet. Besonders hervorzuheben ist die geringe Menge an eingesetztem Elektrolyt von nur 5 μL/mgSchwefel. Die gefertigte Zelle ist über 50 Zyklen stabil und verfügt über eine herausragende Flächenkapazität von 3,7 mAh/cm² nach 50 Zyklen. Verstärkt im Fokus der Forschung stehen Kohlenstoffe, welche mit Heteroatomen dotiert sind. Durch Dotierung können die Eigenschaften der Kohlenstoffe hinsichtlich Polarität oder elektrochemischer Eigenschaften optimiert werden.8,9 Deshalb wurde untersucht, ob über die Carbochlorierung stickstoffdotierter Kohlenstoff synthetisiert werden kann. Dafür wurde ein metallorganisches Netzwerk (MOF) zu Kroll-Kohlenstoff DUT-127 umgesetzt. In Abhängigkeit von der Synthesetemperatur von 600–900 °C konnten spezifische Oberflächen von 1450–2750 m²/g und Porenvolumina zwischen 0,8 und 2 cm³/g erreicht werden. Da das eingesetzte MOF Aminogruppen enthielt, sind in DUT-127 Stickstoffdotierungen vorhanden, was zu einer verringerten Hydrophobie führt. DUT-127 wurde als Elektrodenmaterial in EDLCs eingesetzt. Mit 1 M Schwefelsäure konnten spezifische Kapazitäten von 165 F/g, ermittelt über galvanostatische Lade-/Entlademessungen, erreicht werden. Besonders bei hohen Lade-/Entladeströmen von 12,5 A/g konnten über 90 % der maximalen Kapazität abgerufen werden. Weiterhin ist die hohe Arbeitsfrequenz von über 25 Hz hervorzuheben. Beides wird durch die gute Benetzbarkeit, das ausgeprägte Transportporensystem sowie die geringe Partikelgröße ermöglicht. Der große Vorteil der Synthese von Kroll-Kohlenstoffen über die Carbochlorierung ist der Verzicht auf Lösemittel während der Templatentfernung. Wünschenswert ist es, zukünftig ebenfalls die Synthese der Präkursoren und Template möglichst lösemittelfrei zu gestalten. Die Porenstruktur (Textur) eines porösen Materials bestimmt in großem Maße die Leistungsfähigkeit in einer bestimmten Anwendung. Deshalb wird der exakten Charakterisierung des Porensystems viel Aufmerksamkeit gewidmet. Neben Methoden wie der Gasadsorption sind bildgebende Verfahren ein wichtiges Hilfsmittel, um Informationen über Porengröße, -geometrie und -konnektivität zu erhalten. In einem ersten „Proof of Concept“ wurden die Porensysteme nanoporöser Materialien mit definierter Porenstruktur durch Röntgenmikroskopie untersucht. Dabei konnten Poren bis zu einer Größe von etwa 60 nm aufgelöst werden. Weiterhin war es möglich, aus den aufgenommenen Bilderserien Rekonstruktionen zu erstellen, wodurch Einblicke in das Innere des Partikels möglich wurden. Für die erfolgreiche Rekonstruktion einer Bilderserie ist es notwendig, dass diese optimal ausgerichtet ist. Aufgrund der hohen Uniformität der untersuchten Proben ist dies ein anspruchsvoller Prozess, der noch weiter optimiert werden muss. Dadurch könnten weitere Einblicke in die untersuchten Proben, beispielsweise durch eine quantitative Diskussion der Porosität, gewonnen werden.
2

Electrochemical and ion transport characterisation of a nanoporous carbon derived from SiC

Zuleta, Marcelo January 2005 (has links)
<p>In this doctoral project, a relatively new form of carbon material, with unique narrow pore size distribution around 7 Å and with uniform structure, has been electrochemically characterised using the single particle microelectrode technique. The carbon has been used as electrode material for supercapacitors. This type of capacitors is used as high power energy buffers in hybrid vehicles and for stationary power backup. The principle for the microelectrode technique consists of connecting a carbon particle with a carbon fibre by means of a micromanipulator. The single particle and carbon fibre together form a microelectrode. Combination of this technique with electroanalytical methods such as cyclic voltammetry and potential step measurements allows for the survey of electrochemical phenomena and for the determination of ion transport parameters inside the nanopores.</p><p>A mathematical model based on Fick’s second law, for diffusion of ions inside the nanopores at non steady state, was used for the determination of effective diffusion coefficients (Deff). The coefficients were calculated from an asymptotic solution of Fick’s equation, applied for a thin layer adjacent to the external surface of the carbon particles and valid for the current response in a short time region. Another asymptotic solution was obtained, using spherical geometry and valid for the current response in a long time region.</p><p>In this doctoral work, the carbon particles have been exposed to potential cycling, which mimics that of large electrodes during operation of a double layer capacitor. The potential-current response, E-I, for the nanoporous carbon, shows a pure capacitive behaviour between –0.5 V and 0.1 V vs. the Hg|HgO reference electrode. The detection of the faradaic processes beyond these potentials was possible by lowering of the voltammometric sweep rate. The electrochemical processes occurring at positive and at negative potential were investigated separately.</p><p>Cyclic voltammometric measurements showed that the chemisorption of hydroxyl groups, occurring between 0.1 and 0.3 V, leads to a mild oxidation of the carbon structure, resulting in surface groups containing an oxygen atom at a specific carbon site (e.g., phenolic or quinine type). These oxygen-containing surface groups caused an increase of the specific capacitance, which remained constant throughout a number of voltammometric cycles. The Deff decreased on the other hand with the number of cycles. The Deff decreases also with the positive potential. The evaluation of Deff indicates adsorption of hydroxyl groups and an increase of the effective tortuosity of the pore system.</p><p>The oxidation of the carbon particles, between 0 and 0.5 V, leads to more extensive oxidation and to surface groups containing two oxygen atoms at a single carbon site, followed by formation of carbonate ions. The oxygen-containing surface groups and carbonate ions formed at these potentials do not contribute to the specific capacitance and drastically retard or obstruct the ion transport inside the nanopores.</p><p>At negative potentials the carbon particles show a dominantly capacitive behaviour. The faradaic processes taking place below –0.5 V vs. Hg|HgO reference electrode are generation and adsorption of hydrogen. These processes do not perturb significantly the electrochemical and ion transport properties of the nanoporous carbon particles. It was found that hydrogen generation occurs at –0.5 V vs. Hg|HgO and that two hydrogen oxidation processes take place at positive potentials. The results indicate that the weakly adsorbed hydrogen undergoes oxidation between 0 and 0.1 V and that the strongly adsorbed hydrogen is oxidised at more positive potentials.</p><p>The single particle technique was adapted for the determination of diffusion coefficients of an organic electrolyte. The different size of the anions and cations caused different transport characteristics at negative and positive potentials. Slow cycling was found important for ion penetration inside the nanopores and for the evaluation of the effective diffusion coefficients.</p><p>The effective diffusion coefficients for the nanoporous carbon using aqueous 6M KOH and 0.1M TEABF4 in acetonitrile were estimated to 1.4 (±0.8).10-9 cm2 s-1 and 1.3 (±0.4) 10-8 cm2 s-1, respectively.</p>
3

Electrochemical and ion transport characterisation of a nanoporous carbon derived from SiC

Zuleta, Marcelo January 2005 (has links)
In this doctoral project, a relatively new form of carbon material, with unique narrow pore size distribution around 7 Å and with uniform structure, has been electrochemically characterised using the single particle microelectrode technique. The carbon has been used as electrode material for supercapacitors. This type of capacitors is used as high power energy buffers in hybrid vehicles and for stationary power backup. The principle for the microelectrode technique consists of connecting a carbon particle with a carbon fibre by means of a micromanipulator. The single particle and carbon fibre together form a microelectrode. Combination of this technique with electroanalytical methods such as cyclic voltammetry and potential step measurements allows for the survey of electrochemical phenomena and for the determination of ion transport parameters inside the nanopores. A mathematical model based on Fick’s second law, for diffusion of ions inside the nanopores at non steady state, was used for the determination of effective diffusion coefficients (Deff). The coefficients were calculated from an asymptotic solution of Fick’s equation, applied for a thin layer adjacent to the external surface of the carbon particles and valid for the current response in a short time region. Another asymptotic solution was obtained, using spherical geometry and valid for the current response in a long time region. In this doctoral work, the carbon particles have been exposed to potential cycling, which mimics that of large electrodes during operation of a double layer capacitor. The potential-current response, E-I, for the nanoporous carbon, shows a pure capacitive behaviour between –0.5 V and 0.1 V vs. the Hg|HgO reference electrode. The detection of the faradaic processes beyond these potentials was possible by lowering of the voltammometric sweep rate. The electrochemical processes occurring at positive and at negative potential were investigated separately. Cyclic voltammometric measurements showed that the chemisorption of hydroxyl groups, occurring between 0.1 and 0.3 V, leads to a mild oxidation of the carbon structure, resulting in surface groups containing an oxygen atom at a specific carbon site (e.g., phenolic or quinine type). These oxygen-containing surface groups caused an increase of the specific capacitance, which remained constant throughout a number of voltammometric cycles. The Deff decreased on the other hand with the number of cycles. The Deff decreases also with the positive potential. The evaluation of Deff indicates adsorption of hydroxyl groups and an increase of the effective tortuosity of the pore system. The oxidation of the carbon particles, between 0 and 0.5 V, leads to more extensive oxidation and to surface groups containing two oxygen atoms at a single carbon site, followed by formation of carbonate ions. The oxygen-containing surface groups and carbonate ions formed at these potentials do not contribute to the specific capacitance and drastically retard or obstruct the ion transport inside the nanopores. At negative potentials the carbon particles show a dominantly capacitive behaviour. The faradaic processes taking place below –0.5 V vs. Hg|HgO reference electrode are generation and adsorption of hydrogen. These processes do not perturb significantly the electrochemical and ion transport properties of the nanoporous carbon particles. It was found that hydrogen generation occurs at –0.5 V vs. Hg|HgO and that two hydrogen oxidation processes take place at positive potentials. The results indicate that the weakly adsorbed hydrogen undergoes oxidation between 0 and 0.1 V and that the strongly adsorbed hydrogen is oxidised at more positive potentials. The single particle technique was adapted for the determination of diffusion coefficients of an organic electrolyte. The different size of the anions and cations caused different transport characteristics at negative and positive potentials. Slow cycling was found important for ion penetration inside the nanopores and for the evaluation of the effective diffusion coefficients. The effective diffusion coefficients for the nanoporous carbon using aqueous 6M KOH and 0.1M TEABF4 in acetonitrile were estimated to 1.4 (±0.8).10-9 cm2 s-1 and 1.3 (±0.4) 10-8 cm2 s-1, respectively.
4

Electrical double layer formation in nanoporous carbon materials

Hou, Chia-Hung 01 April 2008 (has links)
Environmental separation processes such as removal of heavy metals from aqueous solutions, electrosorption in groundwater remediation, and capacitive desalination, as well as energy storage in supercapacitors, are based on the electrical double layer (EDL) formation within nanoporous carbon materials. This research is focused on the nano-scale phenomena of EDL formation inside the confined space of nanopores. The electrosorption behavior of nanoporous carbon materials was characterized by measuring the double-layer capacitance using cyclic voltammetry. The presence of micropores results in the occurrence of EDL overlapping, corresponding to a considerable loss of the double-layer capacitance. Hence, pore size distribution plays an important role in determining the double-layer capacitance. EDL formation has significant influence on ion transport and sorption inside nanopores. The data obtained by simple diffusion and electrochemically-aided diffusion experiments demonstrated the size-exclusion effects on pore accessibility by ions. A larger ion-exclusion volume prevents larger ions from penetrating inside the pores. Batch equilibrium electrosorption experiments using nanoporous carbon materials showed that selective electrosorption, imposed by the difference in the size of hydrated ions, occurs in a competitive environment. Molecular modeling based on Monte Carlo methods was developed to simulate the EDL formation in a slit-type nanopore. Simulation results indicated that the competition in asymmetries of ion charge and size not only determines the screening of surface charge but also affects the electrolyte distribution within charged pores. In a mixture of electrolytes, the charge/size competitive effects can dominate pore accessibility. Multivalent counterions with large size have the energetic advantage of screening surface charge. On the other hand, small monovalent counterions present a ¡§size affinity¡¨ to access the pores. Therefore, electrosorption selectivity of counterions with different properties is a result of a counterbalance between minimization of potential energy and size-exclusion effects. Manipulation of electrosorption selectivity to separate ions could in principle be achieved via tuning the EDL formation inside the pores. The findings of the thesis have several significant implications for the development of advanced techniques for selective separation of ions in environmental systems and energy storage.
5

Synthese hierarchisch poröser Kohlenstoffmaterialien durch Carbochlorierung

Leifert, Winfried 27 June 2017 (has links)
Poröse Kohlenstoffmaterialien zeichnen sich durch hohe spezifische Oberflächen und Porenvolumina, eine gute elektrische Leitfähigkeit sowie hohe mechanische und chemische Stabilität aus. Sie werden in Anwendungen wie der Gasspeicherung oder der elektrochemischen Energiespeicherung eingesetzt. Besondere Aufmerksamkeit erfährt momentan die Energiespeicherung, unter anderem durch die fortschreitende Verbreitung der Elektromobilität. Als besonders effizient haben sich elektrochemische Energiespeichermaterialien, zum Beispiel für Doppelschichtkondensatoren (EDLCs) und Batterien, herausgestellt. Ein vielversprechendes Batteriesystem ist die Lithium-Schwefel-Batterie (LiS-Batterie). Mit diesem System können wesentlich höhere gravimetrische Energiedichten als mit Lithium-Ionen-Batterien erreicht werden. Poröser Kohlenstoff stellt aufgrund der hohen Porosität, der guten elektrischen Leitfähigkeit und der chemischen Beständigkeit ein ideales Elektrodenmaterial für die Anwendung sowohl in EDLCs als auch in LiS-Batterien dar. Bei den im industriellen Maßstab am häufigsten eingesetzten Aktivkohlen ist nachteilig, dass während der Synthese nur begrenzte Kontrolle über das Porensystem vorhanden ist. Zudem sind die Poren oft flaschenhalsartig, was zu einer schlechten Zugänglichkeit des Porensystems führt und dadurch den Stofftransport limitiert. Eine verbesserte Kontrolle über das Porennetzwerk bieten das Templatverfahren oder die Synthese von Kohlenstoffen aus Carbiden. Diese Methoden ermöglichen es zudem, Poren unterschiedlicher Größe, das heißt, ein hierarchisches Porensystem, einzubringen. Dies ist vorteilhaft für Prozesse, in denen sowohl eine hohe Adsorptionskapazität als auch ein schneller Stofftransport notwendig sind. Die meisten dieser Synthesen haben die Nachteile, dass sie komplex sind und viel Abfall produzieren. Eine vergleichbar neue Methode zur Herstellung von hierarchischen Kohlenstoffen ist die Synthese von Kroll-Kohlenstoffen über eine reduktive Carbochlorierung. Dieses Verfahren ist dem Schlüsselschritt des Kroll-Prozesses zur Herstellung von Titan nachempfunden. Dafür werden oxidische Nanopartikel mit Kohlenstoff beschichtet und durch Behandlung mit heißem Chlorgas in Kohlenstoff überführt. Diese Synthese ermöglicht neben der Kontrolle der Mesoporengröße über die Größe der Nanopartikel gleichzeitig die Einbringung von Mikroporen durch das Ätzen von Kohlenstoff während der Carbochlorierung, sodass in wenigen Syntheseschritten ein hierarchisches Porensystem generiert werden kann. In dieser Arbeit wurde untersucht, ob sich der Ansatz der Carbochlorierung auf weitere Systeme übertragen lässt. Durch postsynthetische Aktivierung wurde die Porosität von Kroll-Kohlenstoff unter Erhalt der Porenstruktur gesteigert. So war es möglich, Kohlenstoffe mit spezifischen Oberflächen von mehr als 2700 m²/g und Porenvolumina von 3 cm³/g zu synthetisieren. Die Mesoporenstruktur konnte aufrechterhalten werden, während sowohl der Anteil von Meso- als auch Mikroporen erhöht werden konnte. Aktivierter Kroll-Kohlenstoff wurde in EDLCs als Elektrodenmaterial untersucht. Mit 1 M Schwefelsäure als Elektrolyt konnten spezifische Kapazitäten von 160 F/g über galvanostatische Lade-/Entlademessungen erreicht werden, wobei bei hohen Lade-/Entladeströmen von 10 A/g noch 87 % der Maximalkapazität abgerufen werden konnten. Weiterhin wurde der Frage nachgegangen, ob mittels Carbochlorierung geordnete mesoporöse Kohlenstoffe synthetisiert werden können. Dafür wurden sowohl Harttemplat- als auch Weichtemplatmethoden eingesetzt. Im Harttemplatverfahren war es möglich, geordneten mesoporösen Kohlenstoff DUT-118 zu synthetisieren.7 DUT-118 weist eine höhere spezifische Oberfläche und ein höheres Porenvolumen im Vergleich zu Kohlenstoff auf, der über das klassische „Nanocasting“ hergestellt wird. Durch die Carbochlorierung kann zudem der Mikroporenanteil des Materials im Vergleich zur klassischen Templatentfernung gesteigert werden, was durch Präadsorptionsexperimente mit n-Nonan nachgewiesen wurde. In einer weichtemplatgestützten Synthese konnte geordneter mesoporöser Kohlenstoff DUT-119 aus Oxid/Kohlenstoff-Kompositen mittels Carbochlorierung synthetisiert werden. DUT-119 verfügt über eine spezifische Oberfläche von über 2200 m²/g, ein Porenvolumen von mehr als 2 cm³/g und ein hierarchisches Porensystem. Aufgrund des hierarchischen Mikro-/Mesoporensystems ist DUT-119 hervorragend als Kathodenmatrix in LiS-Batterien geeignet. Besonders hervorzuheben ist die geringe Menge an eingesetztem Elektrolyt von nur 5 μL/mgSchwefel. Die gefertigte Zelle ist über 50 Zyklen stabil und verfügt über eine herausragende Flächenkapazität von 3,7 mAh/cm² nach 50 Zyklen. Verstärkt im Fokus der Forschung stehen Kohlenstoffe, welche mit Heteroatomen dotiert sind. Durch Dotierung können die Eigenschaften der Kohlenstoffe hinsichtlich Polarität oder elektrochemischer Eigenschaften optimiert werden.8,9 Deshalb wurde untersucht, ob über die Carbochlorierung stickstoffdotierter Kohlenstoff synthetisiert werden kann. Dafür wurde ein metallorganisches Netzwerk (MOF) zu Kroll-Kohlenstoff DUT-127 umgesetzt. In Abhängigkeit von der Synthesetemperatur von 600–900 °C konnten spezifische Oberflächen von 1450–2750 m²/g und Porenvolumina zwischen 0,8 und 2 cm³/g erreicht werden. Da das eingesetzte MOF Aminogruppen enthielt, sind in DUT-127 Stickstoffdotierungen vorhanden, was zu einer verringerten Hydrophobie führt. DUT-127 wurde als Elektrodenmaterial in EDLCs eingesetzt. Mit 1 M Schwefelsäure konnten spezifische Kapazitäten von 165 F/g, ermittelt über galvanostatische Lade-/Entlademessungen, erreicht werden. Besonders bei hohen Lade-/Entladeströmen von 12,5 A/g konnten über 90 % der maximalen Kapazität abgerufen werden. Weiterhin ist die hohe Arbeitsfrequenz von über 25 Hz hervorzuheben. Beides wird durch die gute Benetzbarkeit, das ausgeprägte Transportporensystem sowie die geringe Partikelgröße ermöglicht. Der große Vorteil der Synthese von Kroll-Kohlenstoffen über die Carbochlorierung ist der Verzicht auf Lösemittel während der Templatentfernung. Wünschenswert ist es, zukünftig ebenfalls die Synthese der Präkursoren und Template möglichst lösemittelfrei zu gestalten. Die Porenstruktur (Textur) eines porösen Materials bestimmt in großem Maße die Leistungsfähigkeit in einer bestimmten Anwendung. Deshalb wird der exakten Charakterisierung des Porensystems viel Aufmerksamkeit gewidmet. Neben Methoden wie der Gasadsorption sind bildgebende Verfahren ein wichtiges Hilfsmittel, um Informationen über Porengröße, -geometrie und -konnektivität zu erhalten. In einem ersten „Proof of Concept“ wurden die Porensysteme nanoporöser Materialien mit definierter Porenstruktur durch Röntgenmikroskopie untersucht. Dabei konnten Poren bis zu einer Größe von etwa 60 nm aufgelöst werden. Weiterhin war es möglich, aus den aufgenommenen Bilderserien Rekonstruktionen zu erstellen, wodurch Einblicke in das Innere des Partikels möglich wurden. Für die erfolgreiche Rekonstruktion einer Bilderserie ist es notwendig, dass diese optimal ausgerichtet ist. Aufgrund der hohen Uniformität der untersuchten Proben ist dies ein anspruchsvoller Prozess, der noch weiter optimiert werden muss. Dadurch könnten weitere Einblicke in die untersuchten Proben, beispielsweise durch eine quantitative Diskussion der Porosität, gewonnen werden.
6

Carbon-based magnetic nanomaterials

Zagaynova, Valeria January 2012 (has links)
Magnetism of carbon-based materials is a challenging area for both fundamental research and possible applications. We present studies of low-dimensional carbon-based magnetic systems (fullerene-diluted molecular magnets, carbon nanotubes, graphite fluoride, and nanoporous carbon) by means of SQUID magnetometer, X-ray diffraction and vibrational spectroscopy, the latter techniques used as complementary instruments to find a correlation between the magnetic behaviour and the structure of the samples.In the first part of the thesis, characteristic features of the magnetization process in aligned films of carbon nanotubes with low concentration of iron are discussed. It is shown that the magnetism of such structures is influenced by quantum effects, and the anisotropy behaviour is opposite to what is observed in heavily doped nanotubes.In the second part, Mn12-based single molecular magnets with various carboxylic ligands and their 1:1 fullerene-diluted complexes are studied. We prove that magnetic properties of such systems strongly depend on the environment, and, in principle, it is possible to design a magnet with desirable properties. One of the studied compounds demonstrated a record blocking temperature for a single molecular magnet. Both fullerene-diluted complexes demonstrated “magnetization training” effect in alternating magnetic fields and the ability to preserve magnetic moment.The third and the fourth parts of the thesis are dedicated to the analysis of various contributions to the magnetic susceptibility of metal-free carbon-based systems – intercalated compounds of graphite fluorides and nanoporous oxygen-eroded graphite. The magnetic properties of these systems are strongly dependent on structure, and can be delicately tuned by altering the π-electron system of graphite, i. e. by degree of fluorination of intercalated compounds and by introduction of boron impurity to the host matrix of nanoporous graphite. / Magnetism av kolbaserade material är ett utmanande område för både grundforskning och möjliga tillämpningar. Vi presenterar studier med låg-dimensionella kolbaserade magnetiska system (fulleren-utspädda molekylära magneter, kolnanorör, grafit fluorid och nanoporösa kol) med hjälp av SQUID magnetometer, röntgendiffraktion och vibrerande spektroskopi, de senare tekniker som används som komplement instrument för att finna sambandet mellan den magnetiska uppträdande och strukturen hos proven. I den första delen av avhandlingen är egenheter från magnetisering processen i linje filmer av kolnanorör med låg koncentration av järn diskuteras. Det visas att magnetism av sådana strukturer påverkas av kvantmekaniska effekter och anisotropin beteende är motsatsen till vad som observerats i kraftigt dopade nanorör. I den tvåa delen är Mn12-baserade enda-molekyl magneter med olika karboxylsyror ligander och deras 1:1 fulleren-utspädda komplex studeras. Vi visar att magnetiska egenskaperna hos sådana system beror i hög grad på miljön, och i princip är det möjligt att utforma en magnet med önskvärda egenskaper. En av de studerade föreningarna visade en post blockeringstemperaturen för en enda molekylär magnet. Både fulleren-utspädda komplex visade "magnetisering utbildning" effekt i alternerande magnetfält och möjligheten att bevara magnetiskt moment. Den tredje och fjärde delarna av avhandlingen är avsedda för inneboende magnetism av analys av olika bidrag till magnetisk susceptibilitet av metall-fritt kol-baserade system -inskjutna föreningar grafit fluorider och nanoporösa O2-eroderade grafit. Magnetiska egenskaperna hos dessa system är starkt beroende av strukturen, och kan fint avstämmas genom att man ändrar π-elektronsystem av grafit, i. e. med graden av fluorering av inskjutna föreningar och genom införandet av bor föroreningar till värd matris av nanoporösa grafit.

Page generated in 0.0693 seconds