• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analýza rekombinantních klonů apoptotické nukleázy v systému "leaf factory" při koinfiltraci modifikujícími geny / Analysis of recombinant clones of apoptotic nucleases in "leaf factory" system upon coinfiltration with modifying genes

LOMNICKÁ, Anna January 2011 (has links)
TBN1 is a nuclease with antitumor activity. The main goal of this work was to estimate how TBN1 and its modificated variants are stable in the ?leaf factory? system used for its production and whether it can be enhanced or influenced by chosen potential ?modificators? i. e. silencing supressors, transcription factors, glycosyltransferases and kinases. Nicotiana benthamina plants were infiltrated with the mixture of Agrobacterium tumefaciens strains bearing the nuclease plant expression vectors and co-infiltrated with the ?modifying? vectors. The nuclease and protein analyses revealed that nuclease TBN1 wt and its modificated variants are stable in the used ?leaf factory? system as to their molecular mass, only quantitative changes were detected. Expreximents showed that activity and production of the nucleases increased upon coinfiltration with silencing supressor and decreased upon coexpression with chosen transcription factor. Glycosyltransferases and kinases influenced activity and production only insignificantly. The experiments also revealed that modificated variants of TBN1 have different molecular weight suggesting that different N-glycosylation domains have different length of sugar chain and influence on nuclear activity. Our data show that this expression in planta seems to be suitable for production for study of antitumor activity of these nucleases.
2

Electrochemical and ion transport characterisation of a nanoporous carbon derived from SiC

Zuleta, Marcelo January 2005 (has links)
<p>In this doctoral project, a relatively new form of carbon material, with unique narrow pore size distribution around 7 Å and with uniform structure, has been electrochemically characterised using the single particle microelectrode technique. The carbon has been used as electrode material for supercapacitors. This type of capacitors is used as high power energy buffers in hybrid vehicles and for stationary power backup. The principle for the microelectrode technique consists of connecting a carbon particle with a carbon fibre by means of a micromanipulator. The single particle and carbon fibre together form a microelectrode. Combination of this technique with electroanalytical methods such as cyclic voltammetry and potential step measurements allows for the survey of electrochemical phenomena and for the determination of ion transport parameters inside the nanopores.</p><p>A mathematical model based on Fick’s second law, for diffusion of ions inside the nanopores at non steady state, was used for the determination of effective diffusion coefficients (Deff). The coefficients were calculated from an asymptotic solution of Fick’s equation, applied for a thin layer adjacent to the external surface of the carbon particles and valid for the current response in a short time region. Another asymptotic solution was obtained, using spherical geometry and valid for the current response in a long time region.</p><p>In this doctoral work, the carbon particles have been exposed to potential cycling, which mimics that of large electrodes during operation of a double layer capacitor. The potential-current response, E-I, for the nanoporous carbon, shows a pure capacitive behaviour between –0.5 V and 0.1 V vs. the Hg|HgO reference electrode. The detection of the faradaic processes beyond these potentials was possible by lowering of the voltammometric sweep rate. The electrochemical processes occurring at positive and at negative potential were investigated separately.</p><p>Cyclic voltammometric measurements showed that the chemisorption of hydroxyl groups, occurring between 0.1 and 0.3 V, leads to a mild oxidation of the carbon structure, resulting in surface groups containing an oxygen atom at a specific carbon site (e.g., phenolic or quinine type). These oxygen-containing surface groups caused an increase of the specific capacitance, which remained constant throughout a number of voltammometric cycles. The Deff decreased on the other hand with the number of cycles. The Deff decreases also with the positive potential. The evaluation of Deff indicates adsorption of hydroxyl groups and an increase of the effective tortuosity of the pore system.</p><p>The oxidation of the carbon particles, between 0 and 0.5 V, leads to more extensive oxidation and to surface groups containing two oxygen atoms at a single carbon site, followed by formation of carbonate ions. The oxygen-containing surface groups and carbonate ions formed at these potentials do not contribute to the specific capacitance and drastically retard or obstruct the ion transport inside the nanopores.</p><p>At negative potentials the carbon particles show a dominantly capacitive behaviour. The faradaic processes taking place below –0.5 V vs. Hg|HgO reference electrode are generation and adsorption of hydrogen. These processes do not perturb significantly the electrochemical and ion transport properties of the nanoporous carbon particles. It was found that hydrogen generation occurs at –0.5 V vs. Hg|HgO and that two hydrogen oxidation processes take place at positive potentials. The results indicate that the weakly adsorbed hydrogen undergoes oxidation between 0 and 0.1 V and that the strongly adsorbed hydrogen is oxidised at more positive potentials.</p><p>The single particle technique was adapted for the determination of diffusion coefficients of an organic electrolyte. The different size of the anions and cations caused different transport characteristics at negative and positive potentials. Slow cycling was found important for ion penetration inside the nanopores and for the evaluation of the effective diffusion coefficients.</p><p>The effective diffusion coefficients for the nanoporous carbon using aqueous 6M KOH and 0.1M TEABF4 in acetonitrile were estimated to 1.4 (±0.8).10-9 cm2 s-1 and 1.3 (±0.4) 10-8 cm2 s-1, respectively.</p>
3

Cathelicidins: a history and current knowledge with experimental data on the antimicrobial and cytotoxic activities of SMAP29 and congeners

Weistroffer, Paula L 01 January 2007 (has links)
No description available.
4

Electrochemical and ion transport characterisation of a nanoporous carbon derived from SiC

Zuleta, Marcelo January 2005 (has links)
In this doctoral project, a relatively new form of carbon material, with unique narrow pore size distribution around 7 Å and with uniform structure, has been electrochemically characterised using the single particle microelectrode technique. The carbon has been used as electrode material for supercapacitors. This type of capacitors is used as high power energy buffers in hybrid vehicles and for stationary power backup. The principle for the microelectrode technique consists of connecting a carbon particle with a carbon fibre by means of a micromanipulator. The single particle and carbon fibre together form a microelectrode. Combination of this technique with electroanalytical methods such as cyclic voltammetry and potential step measurements allows for the survey of electrochemical phenomena and for the determination of ion transport parameters inside the nanopores. A mathematical model based on Fick’s second law, for diffusion of ions inside the nanopores at non steady state, was used for the determination of effective diffusion coefficients (Deff). The coefficients were calculated from an asymptotic solution of Fick’s equation, applied for a thin layer adjacent to the external surface of the carbon particles and valid for the current response in a short time region. Another asymptotic solution was obtained, using spherical geometry and valid for the current response in a long time region. In this doctoral work, the carbon particles have been exposed to potential cycling, which mimics that of large electrodes during operation of a double layer capacitor. The potential-current response, E-I, for the nanoporous carbon, shows a pure capacitive behaviour between –0.5 V and 0.1 V vs. the Hg|HgO reference electrode. The detection of the faradaic processes beyond these potentials was possible by lowering of the voltammometric sweep rate. The electrochemical processes occurring at positive and at negative potential were investigated separately. Cyclic voltammometric measurements showed that the chemisorption of hydroxyl groups, occurring between 0.1 and 0.3 V, leads to a mild oxidation of the carbon structure, resulting in surface groups containing an oxygen atom at a specific carbon site (e.g., phenolic or quinine type). These oxygen-containing surface groups caused an increase of the specific capacitance, which remained constant throughout a number of voltammometric cycles. The Deff decreased on the other hand with the number of cycles. The Deff decreases also with the positive potential. The evaluation of Deff indicates adsorption of hydroxyl groups and an increase of the effective tortuosity of the pore system. The oxidation of the carbon particles, between 0 and 0.5 V, leads to more extensive oxidation and to surface groups containing two oxygen atoms at a single carbon site, followed by formation of carbonate ions. The oxygen-containing surface groups and carbonate ions formed at these potentials do not contribute to the specific capacitance and drastically retard or obstruct the ion transport inside the nanopores. At negative potentials the carbon particles show a dominantly capacitive behaviour. The faradaic processes taking place below –0.5 V vs. Hg|HgO reference electrode are generation and adsorption of hydrogen. These processes do not perturb significantly the electrochemical and ion transport properties of the nanoporous carbon particles. It was found that hydrogen generation occurs at –0.5 V vs. Hg|HgO and that two hydrogen oxidation processes take place at positive potentials. The results indicate that the weakly adsorbed hydrogen undergoes oxidation between 0 and 0.1 V and that the strongly adsorbed hydrogen is oxidised at more positive potentials. The single particle technique was adapted for the determination of diffusion coefficients of an organic electrolyte. The different size of the anions and cations caused different transport characteristics at negative and positive potentials. Slow cycling was found important for ion penetration inside the nanopores and for the evaluation of the effective diffusion coefficients. The effective diffusion coefficients for the nanoporous carbon using aqueous 6M KOH and 0.1M TEABF4 in acetonitrile were estimated to 1.4 (±0.8).10-9 cm2 s-1 and 1.3 (±0.4) 10-8 cm2 s-1, respectively.
5

Modélisation du phénomène de diffusion radiale au sein des ceintures de radiation terrestres par technique de changement d’échelle / Modeling the radial diffusion process in the Earth's radiation belts by a scale-changing technique

Lejosne, Solène 30 September 2013 (has links)
Cette étude s’inscrit dans le domaine de la description de la dynamique des ceintures deradiation terrestres. Elle consiste à modéliser le phénomène de diffusion radiale en travaillantavec une résolution spatio-temporelle plus fine que celle utilisée pour décrire la dynamiquedes ceintures par le biais d’une équation de diffusion. La démarche s’est organisée en troistemps. Tout d’abord, l’objectif a été d’étudier le phénomène de diffusion radiale d’un point devue théorique afin de mettre en lumière les principaux pilotes du processus et d’expliciter uneformulation des coefficients de diffusion radiale. Une fois l’expression de ces coefficientsétablie, l’objectif a ensuite été de les quantifier. Pour cela, nous avons développé desprotocoles analytiques et numériques puis des protocoles expérimentaux. Nous avons discutéles résultats obtenus ainsi que les atouts et les limites de ces protocoles. Cette étude met enévidence le rôle central de l’asymétrie des variations du champ électromagnétique et deschamps électriques induits dans le processus de diffusion radiale. Elle propose des pistes pourla quantification numérique et expérimentale de ces deux pilotes. Elle apporte également unregard critique sur les travaux de la littérature. Elle ouvre la voie pour une nouvellequantification des coefficients de diffusion basée sur une modélisation adéquate de ladynamique de l’environnement électromagnétique / This study falls within the field of the Earth’s radiation belt dynamics. It consists of modelingthe radial diffusion process based on a spatiotemporal resolution higher than the resolution atwhich radiation belt dynamics are described in terms of a diffusion equation. The approachhas been organized in three parts. First, we described radial diffusion theoretically,highlighting the main drivers of the phenomenon and giving a ready-made formula of theradial diffusion coefficients. Then, based on this formula, we aimed to quantify the radialdiffusion coefficients. In order to reach this goal, we developed analytical and numericalprocedures, and then, observational procedures. Finally, we discussed the results and the prosand cons of each method. This study highlights the central role of asymmetric variations ofthe electromagnetic fields and induced electric fields in the driving of the intensity of theradial diffusion process. It provides tracks for numerical and experimental quantification ofthese two drivers. It also provides tools for a critical review of the literature. It paves the wayfor a more accurate determination of radial diffusion coefficients based on a more precisedescription of the electromagnetic environment and its variations.
6

The Geochemical Evolution of Oil Sands Tailings Pond Seepage, Resulting from Diffusive Ingress Through Underlying Glacial Till Sediments

Holden, Alexander A Unknown Date
No description available.
7

Physical and numerical modeling of the dynamics of high-energy electrons trapped in the outer radiation belt of the Earth’s magnetosphere / Modélisation physique et numérique de la dynamique des électrons de haute énergie piégés dans la ceinture de radiation externe de la magnétosphère terrestre

Loridan, Vivien 17 October 2018 (has links)
Les satellites sont vulnérables aux particules de forte énergie piégées dans les ceintures de Van Allen. Afin d’en assurer la protection, il est nécessaire de prédire avec précision la dynamique des électrons au sein de la magnétosphère. Dans un premier temps nous proposons une méthode originale de résolution analytique de l’équation de Fokker-Planck réduite qui modélise le transport et les pertes des électrons de la magnétosphère interne. La résolution repose sur une technique de décomposition spectrale. Si la solution analytique s’avère utile pour mettre en exergue certaines propriétés physiques des ceintures de radiation, elle est également pertinente pour valider le code numérique de résolution de l’équation de Fokker-Planck réduite, développé durant la thèse. Ce dernier nous amène à généraliser l’étude précédente en illustrant l’évolution des flux d’électrons pour diverses énergies et positions. Nous prouvons notamment que la structure des ceintures de radiation ainsi que leur temps d’évolution ne dépendent que de quelques facteurs bien choisis. Dans la perspective de reproduire un événement particulier de retour au calme après un orage magnétique, mesuré par les satellites de la NASA dédiés aux ceintures de radiation, nous sommes en mesure de simuler la précipitation des électrons dans l’atmosphère terrestre causée par les interactions avec les ondes électromagnétiques de la magnétosphère. L’utilisation de conditions bâties sur des données empiriques et spécifiques à la période en question nous permet de corroborer les flux observés. Enfin, l’influence du champ magnétique terrestre sur la dynamique des ceintures de radiation est étudiée sous divers aspects. Nous nous concentrons sur la ceinture externe pour comprendre comment les asymétries du champ magnétique, considérablement façonnées par l’activité solaire, affectent notre manière de concilier théorie et observations. Nous explorons également l’importance de certains processus diffusifs nouveaux et cachés, qui émergent à cause de l’irrégularité naturelle du champ magnétique au plus proche voisinage de la Terre. / Satellites are vulnerable to high-energy particles trapped in the Van Allen belts. To ensure their protection, it is necessary to predict properly the electron dynamics in the magnetosphere. We first propose an original method to find the analytical solution of the reduced Fokker-Planck equation that models the transport and loss of electrons in the inner magnetosphere. The resolution relies on an eigenfunction expansion approach. If the analytical solution is proven to be useful at uncovering some of the physical properties of the radiation belts, it is also relevant to validate the numerical code that solves the reduced Fokker-Planck equation, which has been developed during the PhD. The latter code is used to generalize the previous study in illustrating the evolution of the electron fluxes for various energies and locations. We demonstrate that the structure of the radiation belts as well as their dynamical timescales only depend on a few well-chosen parameters. In the perspective of reproducing a specific storm-recovery event reported by the NASA Van Allen Probes, we are able to simulate the electron scattering in the Earth’s atmosphere due to the interaction with magnetospheric electromagnetic waves. The consideration of data-driven and event-specific conditions enables us to corroborate the observed fluxes. Finally, various influences of the Earth’s magnetic field on the dynamics of the radiation belts are investigated. We focus on the outer belt to see how the magnetic field asymmetries, which are strongly shaped by solar activity, affect the way of conciliating theory and observations. We also explore the importance of new hidden diffusive processes that emerge due to the natural irregularity of the magnetic field in the closest vicinity of the Earth.

Page generated in 0.0615 seconds