• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 7
  • 1
  • 1
  • Tagged with
  • 18
  • 9
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies On Synthesizing Fe And Fe-Cu Nanopowders By Levitational Gas Condensation Process And Their Consolidation Characteristics

Sivaprahasam, D 12 1900 (has links) (PDF)
There exist large number of techniques for the preparation of nanostructured materials. Among them the preparation of nanopowders by gas/vapour condensation is a popular one. Because of very high level of surface to volume ratio, powders of metals which may or may not be reactive in the bulk form undergo vigorous oxidation. Oxidation once initiated continues in an auto catalytic fashion leading to a rise in temperature further increasing the oxidation rate. Therefore, the nanopowders are consolidated in situ under high vacuum. Alternatively a thin passivating oxide layer of few nm can be produced by slow exposure to air. Such powders lend themselves to be handled in further processing in ambient atmosphere. The main objective of the present research is to understand the various scientific and technological issues involved in preparing such passivated nanopowders by levitational gas condensation (LGC) technique, a relatively less explored vapour condensation process and their subsequent consolidation by the powder metallurgical route of compaction and sintering. The nanopowders systems studied are Fe and Fe-Cu (4 wt. %Cu). In chapter 1 a brief review of the gas condensation process and the consolidation behavior of nanopowders produced by this method were carried out. Existing knowledge on various topics relevant for the present study like formation of nanoparticles, agglomeration during gas condensation, physical, structural and chemical nature of the passive layer formed during passivation, compaction and sintering behaviour of this passivated nanopowders were discussed. Chapter 2 details the synthesis of Fe nanopowders by levitational gas condensation process and its physical and structural characteristics. The nanopowders in the as synthesized condition showed extremely low packing density due to loosely packed weakly interlocked agglomerates. The nanoparticles manifest as three dimensional reticulated spongy structure composed of chains of these nanoparticles. Heat transfer calculation carried out to determine the particle temperature at different distance from the levitating drop indicates that the nanoparticles can be ferromagnetic at a distance of less than 2 mm away from the levitation drop and hence the magnetic nature of the materials plays an important role in the formation of nanoparticle chains and spongy agglomerates. Passivation of the nanopowders by slow exposure to air produces 3-4 nm thick oxide layer (Fe3O4) over α-Fe and the volume of these oxides was around 45%. The 3rd chapter presents and discusses the results of Fe-Cu alloy nanopowder synthesized by levitating gas condensation process. While synthesis of elemental nanopowders by gas condensation is straight forward as the operating conditions only influence the particle size, alloys require careful control of the levitating drop composition. Although initially we start the process with levitated drop of required composition, the vapour generated will be richer in more volatile element (Cu in our case). Thus the composition of the levitated drop progressively becomes deficient in Cu which in turn reduces Cu in the vapour. Composition of the drop can be stabilised by continuous feeding of the alloy of required composition that can be estimated from the knowledge of equilibrium relation. To establish the equilibrium relationship between composition of the liquid and vapour in evaporation and condensation, phase diagram in the liquid and vapour region was calculated and was validated by determining composition of the drops. Good agreement between the drop composition and the composition predicted by the phase diagram were observed. Various physical, chemical and structural properties of the Fe-Cu nanopowders are characterized in detail using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and thermogravimetry (TG) analysis. The overall chemical composition of the Fe-Cu alloy nanopowders and of the individual agglomerates is same as the composition of feed materials used. However, Cu was found to segregate to the surface of the nanopowders which is attributed to minimization of surface energy with Cu at the surface. The total weight loss observed in TG in flowing hydrogen indicates that the surface passive layer of Fe-Cu appears to be very thin compared to Fe. The consolidation behaviour of both Fe and Fe-Cu nanopowders was studied by both conventional and spark plasma sintering (SPS) and are discussed in chapter 4. The as collected nanopowders from the apparatus have extremely low apparent density. The powders were further subjected to soft milling in a ball mill under ethanol to disentangle the agglomerates there by improving the pack density. A tenfold improvement was achieved thus making it suitable for consolidation. Uniaxial compaction of these powders for conventional sintering at pressure below 200 MPa yielded compacts free from defects. However, at higher pressure the compacts cracks and delaminates during ejection stage. Analysis of the compaction curves helped us to understand various processes involved during compaction as well as providing explanation for lower green density of Fe-Cu powder compared to Fe. Conventional sintering of the nanopowders compacts were carried out in the flowing hydrogen atmosphere in a laboratory vacuum furnace over wide range of temperatures. Instrumented sintering experiments were also carried out in a dilatometer under hydrogen atmosphere to evaluate shrinkage rate at different temperatures. SPS were carried out under 10 Pa vacuum at a compaction pressure of 250 MPa in WC-Co die cavity. The stability, density and residual oxygen content of the sintered compacts were quantified. Detailed microstuctural analysis of the sintered samples were also carried out using optical microscopy, atomic force microscopy, scanning electron microscopy, transmission electron microscopy, scanning transmission electron microscopy and quantitative composition analysis by EDS. Conventionally sintered compacts of both the powders showed stability only when sintered at 700°C and beyond. The maximum shrinkage/densification occured around 450°C for both the powders and the densification rate observed in Fe-Cu is three times higher than Fe. This enhanced densification in Fe-Cu is attributed to an enhanced diffusivity of Fe atoms in the transient liquid Cu layer formed at the interfaces. The microstructure of Fe-Cu is completely free from any separate oxide phase unlike in samples of Fe sintered at 700°C that contain ultrafine oxide grains. This was explained on the basis of role played by acrawax, a lubricant, admixed to increase the green density. Based on the sintered densities of both SPS and conventional sintered compacts, residual oxide content of the compacts sintered at different temperature and experimentally observed shrinkage rate a phenomenological model has been proposed for the possible sequence of processes occurring during sintering of these nanopowders. The major findings of this work are summarized in chapter 6 and chapter 7 details the scope for the future work.
2

Ferrites de cobalt nanostructurés ; élaboration, caractérisation, propriétés catalytiques, électriques et magnétiques / Nanostructured cobalt ferrite; elaboration, characterization, catalytic, electric and magnetic properties

Ajroudi, LIlia 08 October 2011 (has links)
Ce travail est consacré à l’élaboration et l’étude des propriétés catalytiques, électriques et magnétiques denanomatériaux à base de ferrite de cobalt. Les nanopoudres de ferrite de cobalt (CoxFe3-xO4 , x=0.6,1,1.2,1.8 ) ont étéélaborées par une nouvelle méthode chimique solvo-thermale. Les nanopoudres obtenues sont très bien cristallisées ontdes tailles de particules qui varient avec le taux de cobalt entre 4 et 7 nm et sont très homogènes en composition. Lesnanopoudres de ferrites de cobalt sont monophasées, de structure spinelle avec un paramètre de maille qui varie enfonction du taux de cobalt. Les nanopoudres de ferrites de cobalt ne s’oxydent pas sous air et en température .Lesnanopoudres de composition proches de x=1 sont stables jusqu’à 900°C, alors que pour de plus forts écarts à lastoechiométrie, des transformations de phase ont lieu au delà de 550°C.Les mesures catalytiques ont mis en évidence l’oxydation de CH4 en CO2 après passage sur le catalyseur pour tous leséchantillons. L’efficacité catalytique est maximale et l’énergie d’activation est la plus faible pour l’échantillon x=1.8 ;ceci est lié à la plus grande surface spécifique, et au plus fort taux de sites actifs pour cette composition.Les ferrites de cobalt élaborées présentent une conduction de type électronique avec un comportement semi conducteurjusqu’à 500-600°C et un comportement métallique au-delà. Les variations de conductivité d’une composition à l’autres’expliquent par les variations du nombre de paires [Co2+,Fe3+].Les nanoparticules ont un comportement superparamagnétique quelle que soit la composition. Ce comportement estdû principalement à un effet de taille et de forme, et à une distribution cationique différente entre les deux types desites tétraédriques et octaédriques de la structure spinelle. Ces ferrites présentent une aimantation à saturation prochede celle de l’état massif, du fait de la grande qualité cristalline attribuée à la méthode d’élaboration mise au point. / This work is devoted to the synthesis and the study of the physical properties of cobalt ferrite nanomaterials. Thecobalt ferrite nanopowders (CoxFe3-xO4 , x=0.6,1,1.2,1.8 ) were synthesized by a new solvo thermal chemical route.The nanopowders are highly crystallized, very homogeneous in size and chemical composition. The nanopowderssizes are ranged from 4 nm for high cobalt content to 7 nm for low cobalt content. They are single phased, with thespinel structure, and a cell parameter varying with the cobalt content. The cobalt ferrites do not oxidize, when heatedunder air. For compositions near x=1, the cobalt ferrites are stable when heated under air up to 900°C, as for the othercompositions, phase transformations occur above 550°C.The catalytic measurements have shown the oxidation of CH4 into CO2 in presence of the catalyst for all thecompositions. Cobalt ferrite with composition x=1.8, presents the lowest activation energy and the best catalyticefficiency; this can be related to the great specific surface and the high rate of active sites for this composition.Concerning the conduction properties, the cobalt ferrites exhibit a semiconductor character up to 500-600 ° C and ametallic one above. Changes in conductivity from a composition to another are explained by changes in the number ofpairs [Co2+, Fe3+].A superparamagnetic behaviour was evidenced whatever the composition. This is due for one part to a size and shapeeffect and for the other part to different cationic distribution between tetrahedral and octahedral sites. These ferriteshave a saturation magnetization close to that of the massive state, because of the high crystallinity of the nanopowders,attributed to the synthesis method developed in this work.
3

Synthesis and characterisation of acceptor-doped BaSnO3 compounds as proton conductors / Synthèse et caractérisation de composés conducteurs protoniques de type BaSnO3 dopés accepteurs

Wang, Yanzhong 25 September 2009 (has links)
L'objectif de ce travail était l'étude systématique de composés de type BaSn1-xMxO3-d (M= Y, Gd, Sc, In, …) pour lesquels des propriétés de conduction protonique étaient attendues. Nous avons tout d'abord développé une méthode de synthèse originale par polymérisation d'acide acrylique qui nous a permis d'obtenir des poudres nanométriques pures, puis des céramiques denses après frittage. Nous avons ensuite étudié l'influence de la nature et de la teneur en dopant sur les propriétés structurales et électriques. Cette étude expérimentale a été couplée à la modélisation semi-empirique qui nous a permis de prédire les défauts les plus probables au sein de la phase. Les résultats montrent que le modèle de substitution est étroitement lié à la taille des cations substituant. Pour les petits cations, une substitution totale sur le site B est calculée et observée alors que, pour les plus grosses terres rares (La, Nd et Sm), la modélisation anticipe une substitution partielle possible sur le site A confirmée par une anomalie dans l'évolution des paramètres de maille. Concernant les propriétés électriques, nous n'avons pas observé de tendances claires de l'évolution des propriétés électriques en fonction de la nature du cation. Il semble malgré tout que les dopants les meilleurs correspondent à ceux pour lesquels l'énergie d'association lacune-dopant est la plus faible. Dans le cas de l'yttrium, la conduction augmente avec le taux de substitution ce qui peut être relié à la fois à l'augmentation associée du nombre de porteurs et à l'évolution microstructurale. Nous montrons également que le taux de dopant a une forte influence sur la stabilité des matériaux produits. Ainsi, les composés fortement dopés sont instables sous atmosphère humide, alors que les composés faiblement dopés semblent stables sous atmosphère humide, riches en H2 ou CO2. Finalement, nous avons montré que l'emploi de ZnO comme additif permettait d'abaisser fortement la température de frittage sans pour autant affecter les propriétés de transport. Cette étude a donc démontré que les composés de type BaSn1-xMxO3-d (M= Y, Gd, Sc, In, …) peuvent trouver des applications comme conducteurs protoniques pour peu que le taux de substituant soit limité pour des raisons de stabilité, que la taille de grains soit importante pour améliorer la conduction et le procédé de fabrication optimisé pour obtenir une forte densité. / The main objective of the present work was the systematic study of BaSn1-xMxO3-d (M = Y, Gd, Sc, In, …) as proton conductors. We first developed a synthesis route based on the acrylic acid polymerization. This allowed us obtaining pure nanopowders and dense ceramics after a classical sintering process. We then studied the influence of dopant nature and content on the structural and electrical properties. This study was coupled to theoretical calculations which helped us predicting the most probable defects within the structure. Results indicate that the substitution model is closely linked with dopant size. For small cations, the substitution on B-site occurs as foreseen by the original compound formula. For big cations (La, Nd and Sm), the modeling anticipates a possible partial substitution on A-site, confirmed by an anomaly observed on the evolution of cell parameters. Concerning electrical properties, we did not observe any significant trend as a function of dopant size. It seems nevertheless that best dopants in terms of anion or proton conduction are those presenting the smaller dopant-defect interaction energy as revealed by semi-empirical calculations. In the case of yttrium, the evolution of conduction with Y3+ content is linked both to the increase of charge carriers due to doping and to the increase of grain size with increasing dopant content. We also showed that the stability is strongly linked with the doping level. While highly doped compounds are unstable in humid atmosphere, slightly doped compounds present good stability in humid, hydrogen and CO2 containing atmosphere. Finally, we showed that ZnO as an additive could be used to lower the sintering temperature without changing the conduction properties. This study thus showed that BaSn1-xMxO3-d(M = Y, Gd, Sc, In, …) may find applications as proton conductors if dopant level is limited for stability reasons, grain size important for better conduction properties and the elaboration process optimised to ensure high density.
4

Élaboration et caractérisations de matériaux ferroélectriques sans plomb : céramiques, films minces, nanopoudres et composites nanopoudres - cristal liquide / Preparation and characterization of lead-free ferroelectric materials : ceramics, thin films, nanopowders, composite nanopowders - liquid crystal

Gharbi, Walid Allah 11 December 2013 (has links)
Dans ce travail nous avons élaboré des matériaux ferroélectriques Ba0,9Sr0,1TiO3 (BST) de tailles de plus en plus réduites : céramiques, couches minces et nanoparticules pour des applications en microélectronique. Des matériaux composites constitués de nanoparticules de BST dispersées dans un cristal liquide ont également été réalisés. Le caractère ferroélectrique des films BST a été mis en évidence par des mesures des cycles d'hystérésis électriques. Les meilleures propriétés électriques ont été obtenues avec un recuit à 950 °C pendant 15 mn. Les analyses physico-chimiques sur les nanopoudres BST indiquent que la température optimale de calcination est de 900 °C. La taille des grains obtenue, entre 30 et 100 nm. Les caractérisations par diffraction de rayons X des nanopoudres montrent une structure quadratique à l'ambiante donc la possibilité d'un caractère ferroélectrique de celles-ci. La synthèse de céramiques BST par voie sol-gel et frittées à différentes températures a montré que la taille des grains dépend directement de la température de frittage et s'avère être un paramètre clé influençant la réponse diélectrique du matériau. Les céramiques BST élaborées par la méthode solide-solide permettent d'obtenir une taille de grains supérieure et en conséquence des valeurs de permittivité diélectrique plus élevées. L'étude comparative des propriétés diélectriques du cristal liquide seul et du mélange nanoparticules BST-cristal liquide a confirmé l'influence des nanoparticules BST sur l'orientation des molécules du cristal liquide. La confrontation des résultats expérimentaux aux lois de mélanges a permis l'estimation de la permittivité diélectrique des nanoparticules de BST. / In this work a ferroelectrics Ba0,9Sr0,1TiO3 (BST) ceramics, thin layers and nanoparticles were elaborated in order to obtain suitable materials for microelectronics. A mixture of BST nanoparticles dispersed in a liquid crystal was also performed. The ferrolectric nature of BST films has been demonstrated by measurements of the electrical hysteresis cycles. The best electrical properties were obtained with annealing at 950 °C for 15 min. The physico-chemical analyzes of BST nanapowders indicate that the optimum calcination temperature is at 900 °C. The grain size obtained is between 30 and 100 nm. The characterizations of nanapowders with X-Ray Diffraction show a tetragonal structure at room temperature therefore the possibility of a ferroelectric character. The ceramics synthesized by sol-gel method and sintered at different temperatures showed that the grain size depends directly on the sintering temperature and proves to be a key parameter influencing the dielectric response of the material. The BST ceramics prepared by solid-solid method used to get a size larger grain and consequently a higher value of dielectric permittivity. The comparative study of the dielectric properties of the liquid crystal single and the mixture "BST nanoparticles- liquid crystal" confirmed the influence of nanoparticles on the orientation of liquid crystal molecules. The comparison of experimental results with the mixtures laws allowed the estimation of the dielcectric permittivity of BST nanoparticles.
5

Évaluation de l'inflammabilité et de l'explosivité des nanopoudres : une démarche essentielle pour la maîtrise des risques / Evaluation of ignition and explosion risks of nanopowders : a great way to manage industrial safety risks

Vignes, Alexis 13 October 2008 (has links)
Depuis plusieurs années déjà, nombre d’applications industrielles impliquant des nanomatériaux ont vu le jour mais les connaissances relatives aux dangers de ces nouveaux matériaux sont actuellement assez restreintes. Le développement de ces nouveaux produits ne pouvant se poursuivre sans une évaluation approfondie des risques pour l’environnement et au poste de travail, les dangers relatifs aux nanoparticules doivent être évalués. La toxicité potentielle de ces nouveaux matériaux est souvent mise en avant. Néanmoins, les risques d’incendie et d’explosion ne doivent pas être négligés. Centrées essentiellement sur les poudres de taille micrométrique, les données de la littérature ne permettent pas, en effet, à l’heure actuelle, d’évaluer la probabilité et la gravité d’une explosion de nanopoudres. Dans ce contexte, la sensibilité à l’inflammation et la sévérité d’explosion de nanomatériaux pulvérulents typiques ont été évaluées ainsi que la validité des appareillages et procédures standards, habituellement utilisés lors d’une telle démarche. Enfin, la méthodologie adoptée afin d’évaluer les risques d’inflammation et d’explosion d’une installation de production de nanopoudres et de sécuriser au mieux la santé des travailleurs exposés aux nanoparticules est illustrée aux travers de deux exemples. Cette démarche pourra servir de base à de futures analyses de risques concernant les produits nanostructurés, exercice qui va devenir indispensable et de plus en plus fréquent au vu du contexte économique et réglementaire / In the industrial and research fields, nanomaterials provides a growing interest and many industrial applications have already been developed in the last years. However, knowledge about the hazards related to these new materials is currently limited. As safe nanomaterial production cannot be permitted without a deeper evaluation of environmental and occupational hazards, hazards related to nanoparticles have to be evaluated. One often thinks about the potential toxicity of nanoparticles. However, dust fire and explosion should not be neglected when the dusts are combustible, which may often be the case. So far, literature studies concerning the evaluation of explosion and flammability risks of powders were essentially carried out on micron-sized materials and do not enable in fact to evaluate fire and explosion risk probabilities and gravities of nanopowders. The main goal of this work is to study explosion and ignition risks related to nanopowders. In particular, the evaluation of the explosion sensitivity and severity of typical nanomaterials has been studied as well as the validity of the existing analytical and methodological tools designed to evaluate dust ignition and explosion hazards. This work also deals with the methodology applied to a plant and to a laboratory in order to define the best safety barriers which were positioned to ensure the best occupational safety level to all workers and evaluate in a good way the ignition and explosion risks related to the use and production of fluffy nanomaterials. This work will certainly help risk engineers concerned about the handling and the production of combustible nanopowders.
6

Synthesis and characterisation of acceptor-doped BaSnO3 compounds as proton conductors

Wang, Yanzhong 25 September 2009 (has links) (PDF)
The main objective of the present work was the systematic study of BaSn1-xMxO3-d (M = Y, Gd, Sc, In, ...) as proton conductors. We first developed a synthesis route based on the acrylic acid polymerization. This allowed us obtaining pure nanopowders and dense ceramics after a classical sintering process. We then studied the influence of dopant nature and content on the structural and electrical properties. This study was coupled to theoretical calculations which helped us predicting the most probable defects within the structure. Results indicate that the substitution model is closely linked with dopant size. For small cations, the substitution on B-site occurs as foreseen by the original compound formula. For big cations (La, Nd and Sm), the modeling anticipates a possible partial substitution on A-site, confirmed by an anomaly observed on the evolution of cell parameters. Concerning electrical properties, we did not observe any significant trend as a function of dopant size. It seems nevertheless that best dopants in terms of anion or proton conduction are those presenting the smaller dopant-defect interaction energy as revealed by semi-empirical calculations. In the case of yttrium, the evolution of conduction with Y3+ content is linked both to the increase of charge carriers due to doping and to the increase of grain size with increasing dopant content. We also showed that the stability is strongly linked with the doping level. While highly doped compounds are unstable in humid atmosphere, slightly doped compounds present good stability in humid, hydrogen and CO2 containing atmosphere. Finally, we showed that ZnO as an additive could be used to lower the sintering temperature without changing the conduction properties. This study thus showed that BaSn1-xMxO3-d(M = Y, Gd, Sc, In, ...) may find applications as proton conductors if dopant level is limited for stability reasons, grain size important for better conduction properties and the elaboration process optimised to ensure high density.
7

Structuration par voie colloïdale de nanopoudres de boehmite à partir de systèmes mixtes organique/inorganique / Structuration by colloidal way of nanopowders boehmite from organic/inorganic hybrid systems

Belounis, Fahouzi 02 July 2015 (has links)
La recherche s’appuie pour une grande part sur le développement de nanomatériaux. Ceux-ci constituent, en effet, les matières premières des nanosciences et ouvrent à l’industrie des perspectives extrêmement larges. Le développement des céramiques nécessite une grande maîtrise des procédés d'élaboration qui permettent d'obtenir des microstructures appropriées à l’élaboration de matériaux denses pour différentes applications par exemple biomédicales. Les évolutions récentes concernent les matériaux hybrides et bio-inspirés ; les problèmes de mise en forme et de structuration multi-échelles de ces derniers incitent au développement de nouveaux procédés telle que l’approche nouvelle dite ascendante (bottom-up) consistant à fabriquer un matériau à échelle microscopique voir macroscopique à partir de ses particules nanométriques.Dans ce contexte, les travaux de cette thèse ont pour objectif de faciliter, par l’intermédiaire d’une modification de surface, la mise au point d’une technique de mise en forme originale pour l’élaboration de céramiques issues d’un matériau nanométrique de type oxyde: la granulation par coagulation. Nous nous sommes intéressés au cas d’une nanopoudre de boehmite (AlO(OH)). Cependant, cette poudre nanométrique de boehmite présente de multiples instabilités en suspension. En effet, cette poudre est soumise à de fortes gélifications en fonction du pH et à basse concentration. Il est nécessaire dans ce cas pour obtenir une suspension stable de modifier les propriétés de surface. En conséquence, une partie de ces travaux est consacrée à la fonctionnalisation de surface par des organosilanes. Cette modification de surface n’est cependant qu’une étape à l’obtention d’une particule hybride constituée d’un cœur de boehmite et d’une couche polymérique. En réalité, le greffage d’organosilane à la surface permet de créer un pont entre la partie centrale inorganique et la partie externe organique constituée de latex pouvant se lier à l’organosilane utilisé (le MPS).Le matériau hybride boehmite-MPS-latex ainsi obtenu peut être utilisé dans une nouvelle technique de mise en forme colloïdale inspirée de la granulation par hétérocoagulation. En milieu aqueux, la polarité opposée des charges de surfaces de deux entités différentes conduit à l’hétérocoagulation en suspension. La coagulation observée dans cette thèse, met en relation deux particules identiques possédant chacune, les deux charges opposées à leur surface. Le principe de la granulation consiste à induire, sous l’effet d’un mouvement de rotation des échantillons, la coalescence des agglomérats en forçant leurs surfaces à interagir par contacts réciproques. En sélectionnant la formulation, la coalescence conduit à l'élaboration d'objets sphériques homogènes en taille et en forme. / Research in this field is multidisciplinary and relies largely on the development of nanomaterials. These are, in fact, the raw materials of nanoscience and open to industry extremely broad prospects. In the field of material sciences, nanostructured materials, among them nanostructured ceramics have grown considerably in recent years. Development of ceramic requires a mastery of production processes that achieve appropriate microstructures in the development of dense materials for various applications such biomédicals. Recent developments include hybrid and bio-inspired materials; the problems of shaping and multi-scale structure of these encourage the development of new processes such as the new so-called bottom-up approach of manufacturing and make macroscopic material from its nanoparticles. In this context, the work of this PhD aim to facilitate, through surface modification, the development of an original layout technique for the development of ceramics from a material nano-oxide type: granulation coagulation. We were interested in the case of a boehmite nanopowder (AlO(OH)). However, this nanoscale boehmite powder has many instabilities in suspension. Indeed, the powder is subjected to strong gelation as function of pH and at low concentrations. It is necessary in this case to obtain a stable suspension by modifying the surface properties. Accordingly, a part of this work is devoted to surface functionalization by organosilanes. This surface modification, however, is only one stage to obtain a hybrid particle comprised of a heart of boehmite and a polymeric layer. In reality, the grafting organosilane (MPS) at the surface permit to create a bridge between the inorganic core and organic outer part consists of latex. The boehmite-MPS-latex hybrid material thus obtained can be used in a new colloidal shaping technique inspired by heterocoagulation granulation. In aqueous medium, the opposite polarity of the charges of the surfaces of two different entities leads to heterocoagulation in suspension. Clotting observed in this thesis, connects two identical particles with each, the two charges opposite to the surface. The principle of the granulation is to induce, under the effect the rotational movement, the coalescence of the agglomerates by forcing their surfaces to interact by mutual contact. By selecting the formulation, coalescence leads to the development of homogeneous spherical objects in size and shape.
8

New developments in positron annihilation spectroscopy techniques: from experimental setups to advanced processing software

Stepanov, Petr 07 May 2020 (has links)
No description available.
9

Synthesis And Characterization Of Nanocrystalline Hydroxyapatite Powder; And The Effects Of Oxide-based Sintering Additives On Tricalcium Phosphate

Bhatt, Himesh A 01 January 2005 (has links)
Calcium phosphate (CP) materials have been used extensively for bone replacement and augmentation due to their similarity to the mineral component of bone. In addition to being non-toxic, they are biocompatible, not recognized as foreign materials in vivo, and most importantly, exhibit osteoconductive behavior, being able to help in bone formation during healing. CPs form an intimate physicochemical bond with the host tissue, termed osseointegration. However the main limitation of calcium phosphates is their inherent brittle nature and poor mechanical performance under complex stress states. As a result, these materials have been used clinically only in non-load-bearing applications, primarily as granules. The primary goal of this research was to enhance mechanical performance of CPs, tricalcium phosphate (TCP) and hydroxyapatite (HAp) to be precise, in an attempt to develop controlled strength-loss resorbable/ bioactive ceramic bone-grafts for hard tissue engineering. In my work on TCP, I selected and introduced small quantities of single and multi-oxide sintering additives in TCP, to study their influence on sintering behavior, densification, mechanical properties and biodegradation/ biomechanical properties in vitro. Through this research, I could improve mechanical performance of [Beta]-tricalcium phosphate ([beta]-TCP) and controlled its rate of biodegradation by introducing of certain additives. In my second work, I improved mechanical performance of HAp (Ca10(PO4)6(OH)2 by reducing particle-size of the powder through the synthesis of stoichiometric, nanocrystalline, single phase HAp powder in the range of 2-20 nm. Synthesis of powder was accomplished via a modified low temperature sol-gel technique using ethanol/ water as solvent.
10

Characterization And Aqueous Colloidal Processing Of Tungsten Nano-powders

Yang, Zhengtao 01 January 2009 (has links)
Extensive attention has been paid to consolidate nanoparticles into nanocrystalline components that possess better properties than their coarse-grained counterparts. Nanocrystalline monolithic tungsten (W) has been envisaged to possess better properties than coarse-grained tungsten and to improve the performance of many military components. Commercially available nano-W powders were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and Brunauer, Emmett, and Teller (BET) measurement. While the bulk of nano-W powders consisted of bcc-W as confirmed by XRD and TEM, much of their surface consisted of WO3 with traces of WO2 and WC. Despite the irregular morphology and agglomerates greater than 1 m in size, the diameter of individual nano-W powders ranged from 30 to 100 nm with a surface area of 10.4 m2/g. To obtain green bodies of higher densities and more homogeneous microstructures after consolidation, W nanopowders were de-agglomerated in water and slip cast in plaster molds. De-agglomeration in water was conducted by repeated ultrasonication, washing, centrifuge and pH adjustment. The change in particle size and morphology was examined via SEM. After the initial surface oxide was removed by repeated washing, the reactivity of W nanoparticles to water was somewhat inhibited. Increasing the number of cycles for ultrasonication and washing increased the pH, the degree of de-agglomeration and the stability of W suspension. The zeta potential was more negative with increasing pH and most negative at pH values close to 5. Viscosity also decreased with increasing pH and reached a minimum at a pH 5. To obtain the highest solid loading with the lowest viscosity, the pH value of W suspension was adjusted to 5 using aqueous tetramethylammonium hydroxide solutions. The relative density of the slip cast increased with longer ultrasonic time, increasing slurry pH up to 5, and consequent increase in solids loading. Smaller particles were separated from larger ones by ultrasonication, washing with water and centrifugation. At a 27.8 vol.% solids loading, the size-separated fine W slurry was slip cast into pellets with relative green densities up to 41.3 % and approximate particle sizes of 100 nm. W powders were also ultrasonicated in aqueous poly (ethyleneimine) (PEI) solutions with various concentrations. SEM examinations of particle sizes showed that 1 wt.% PEI led to the optimum dispersion and ultrasonication for longer time with a low power resulted in better dispersion. 0.5 g of W powders were ultrasonicated in 10 ml aqueous poly (allylamine hydrochloride) (PAH) solutions with molar concentrations ranging from 0.01 to 0.05 M. W suspensions with 0.03 M and 0.04 M PAH after two washing cycles showed improved dispersion. Cold isostatic pressing can further increase the green density following slip casting. Sintered slip casts made from de-agglomerated nanoparticle W showed a lower density, more uniform microstructure, smaller grains and smaller pores than the sintered dry pressed pellets.

Page generated in 0.0651 seconds