• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1392
  • 374
  • 174
  • 43
  • 33
  • 20
  • 16
  • 10
  • 8
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 2630
  • 659
  • 574
  • 484
  • 378
  • 368
  • 307
  • 301
  • 226
  • 189
  • 182
  • 179
  • 161
  • 153
  • 152
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Nano-grinding for fabrication of microlenses on optical fibers endfaces

Gharbia, Yousef Ahmed, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2003 (has links)
This work presents mechanical nano-grinding as an alternative technique for the fabrication of optical fibers endface microlenses. It also presents a novel surface-roughness improvement technique called Loose Abrasive Blasting (LAB). Traditionally, the majority of such microlenses are made using either chemical etching or heating and pulling methods. Despite the success of these methods, they suffer some common drawbacks such as the lack of controllability on the produced lens profile. Consequently the possible variations of the lens profiles that can be made by these methods are also limited. The difficulty to center the lens on the fiber core is another problem associated with heating and pulling method. The exposure to hazardous chemical such as hydrofluoric acid is yet another problem associated with chemical etching. Nano-grinding technique described in this thesis should provide a much better alternative to the traditional optical fabrication techniques. Nano-grinding experiments were conducted on a nano-grinding machine (NGM) specially built for this purpose. The machine incorporates state-of-the-art air-bearing spindles, piezo electric actuators, and capacitive displacement sensors with accuracy down to 2 nm. Such precise motion provided by this system is the key for the success of this technique. With such system, it was possible to produce a multitude variety of lens profiles with high profile accuracy and with surfaces of optical quality without the need for exposure to any kind of hazardous chemicals. In achieving this objective, the research was conducted on many frontiers. First, the possibility of grinding optical fibers without inducing surface and subsurface damages was investigated. Micro-indentation, nano-indentation, and nano-scratch tests were conducted to determine the critical depth of cut that can be achieved before the occurrence of surface and subsurface cracks. Nano-scratch test in particular provided a clear insight to the cracking and the chipping mechanisms that might unfold if the critical depth of cut was exceeded in an actual grinding situation. The knowledge gained from this exercise laid the ground base for the design of the NGM. Using the NGM, further experiments were carried out to determine the optimal grinding parameters for an efficient and successful grinding process. Parameters investigated include the grit size, the cutting speed, and the in-feed rates. The optimum parameters have to ensure the best endface surface quality and the same time maintain a high throughput. This study shows that based on these optimal parameters, it should be possible to produce endface microlenses of optical surface quality free surface and/or subsurface damages in less than 30 seconds with surface roughness (Ra) less than 3 nm. A novel post-grinding surface improvement techniques was also developed. The technique called loose abrasive blasting (LAB) can be used for polishing at and non-flat surfaces. Experiments were conducted on a loose abrasive blasting machine built specially for this purpose. The performance of this technique was compared with other techniques such as slurry polishing and chemical etching used for polishing of brittle materials. The results showed that while chemical etching was found unsuitable for polishing of at optical fiber endfaces, LAB outperformed slurry polishing by significant margin. After the optimal grinding conditions were established, the NGM was used for grinding of different kinds of optical fiber microlens profiles. Among the endface profiles produced were conical lenses, tapered lenses, D-shaped lenses and others. It has also been shown, in case of conical lenses for instance, that there is almost unlimited number of profiles that can be produced by simply changing the contact angle between the fiber endface and the grinding film. The effect of surface roughness on light coupling efficiency between a fiber endface and a laser diode was also investigated. Cleaved fiber endfaces as well as ground endfaces with variant degrees of surface roughness were used in this experiment. The results showed that surface roughness has significant effect on light coupling efficiency. The effect of lens eccentricity on light coupling was also investigated.
302

探討捷克與美國對科技新聞報導之異同:以奈米科技為例 / A comparative study of how the press covers nanotechnology in Czech Republic and United States

茂瑞德, Materna, Adam Unknown Date (has links)
奈米科技被認為在不同的領域都能帶來重大好處,例如醫藥發展、水、土壤或土淨化、資訊和通信基礎設施等方面。奈米科技也可用來製造的更強韌、更輕巧的材料,這也是為什麼政府和許多公司行號願意投注大量的資金來發展奈米科技。而這當中,媒體扮演了至關重要的角色,因為媒體對於奈米科技的報導,不僅會影響人們對此科技的印象與知識,更有可能影響政府的決策。因此,瞭解媒體如何報導奈米科技,甚至不同國家的報紙是否反映在地經濟與文化背景,實在是個不可忽略的重要研究問題。藉由分析美國與捷克的三家平面媒體從2000年至2010年共計150則新聞,本研究發現,以整體故事的基調而言,美國和捷克記者對奈米科技大都持肯定態度。此外,他們頻繁地使用「進步框架」,強調此科技未來的潛力,這三個報紙所報導的關於奈米科技的優點也遠遠超過風險,在這些媒體所提到的少數風險當中,較受到注意的是「未知」和「醫療」方面的風險。關於消息來源,大學的教職員和科學家是記者最常訪問的對象。這項研究有助於瞭解科學和社會的互動。藉由分析處於不同社會、政治和文化背景之下的媒體,本研究對於不同的社會環境如何理解一項新興科技,提供了有價值的見解。 / Nanotechnologies seem to have potential to bring significant benefits in diverse areas such as pharmaceuticals development, water, soil or earth decontamination, information and communication infrastructures, and the production of stronger, lighter and better nanomaterials. It is also what attracts investment from both governments and private sectors in nanotechnologies. Media play a crucial role in this dynamic. Based on these facts, it will be interesting to examine media coverage of nanotechnology to see if it reflects different economic and cultural context. Analyzing 150 news stories from 2000 to 2010, I found that American and Czech press was largely positive about nanotechnology in terms of overall story tone. Furthermore, not only did they portray the technology as having the potential to bring about progress (the progress frame), the examined newspapers also emphasized a lot more benefits than risks, with a focus on unspecified or yet unknown ones and medical. As far as news sources are concerned, university employees and scientists as well as general sources were consulted most frequently by the journalists in the United States and the Czech Republic. This study contributes to the discussions about how science and society interact. By analyzing media content in different social, political, and cultural contexts, this study provides valuable insights into how an emerging technology is understood in different societies. Theoretical and practical implications are discussed.
303

Computational studies of photo-induces isomerization dynamics in a model molecular motor system

Burtt, Kelly D. January 2005 (has links)
Thesis (Ph. D.)--University of Nevada, Reno, 2005. / "December 2005." Includes bibliographical references. Online version available on the World Wide Web.
304

Catalyst Coated Membranes (CCMs) for polymerelectrolyte Membrane (PEM) fuel cells

Barron, Olivia January 2010 (has links)
<p>The main objective of this work it to produce membrane electrode assemblies (MEAs) that have improved performance over MEAs produced by the conventional manner, by producing highly efficient, electroactive, uniform catalyst layers with lower quantities of platinum electrocatalyst. The catalyst coated membrane (CCM) method was used to prepare the MEAs for the PEM fuel cell as it has been reported that this method of MEA fabrication can improve the performance of PEM fuel cells. The MEAs performances were evaluated using polarisation studies on a single cell. A comparison of polarisation curves between CCM MEAs and MEAs produced in the conventional manner illustrated that CCM MEAs have improved performance at high current densities (&gt / 800 mA/cm2).</p>
305

Addition of a Magnetite Layer onto a Polysulfone Water Treatment Membrane to Enhance Virus Removal

January 2012 (has links)
The applicability of low-pressure membranes systems in distributed (point of use) water treatment is hindered by, among other things, their inability to remove potentially harmful viruses and ions via size exclusion. According to the USEPA and the Safe Drinking Water Act, drinking water treatment processes must be designed for 4-log virus removal. Batch experiments using magnetite nanoparticle (nano-Fe 3 O 4 ) suspensions and water filtration experiments with Polysulfone (PSf) membranes coated with nano-Fe 3 O 4 were conducted to assess the removal of a model virus (bacteriophage MS2). The membranes were coated via a simple filtration protocol. Unmodified membranes were a poor adsorbent for MS2 bacteriophage with less than 0.5-log removal, whereas membranes coated with magnetite nanoparticles exhibited a removal efficiency exceeding 99.99% (4-log). Thus, a cartridge of PSf membranes coated with nano-Fe 3 O 4 particles could be used to remove viruses from water. Such membranes showed negligible iron leaching into the filtrate, thus obviating concern about colored water. Further research is needed to reduce the loss of water flux caused by coating.
306

Investigation of Nano-scale, Self-assembled, Polymeric Systems by Atomic Force Microscopy

Li, James K. 18 February 2011 (has links)
The atomic force microscope (AFM) was used to study a series of self-assembled systems: alkanethiol self-assembled monolayer (SAM), diblock copolymer thin film, solid supported lipid bilayer membrane, and microgel with double interpenetrating polymer network. In the first system, packing and restructuring of self-assembled monolayers as exhibited by several alkanethiol systems (1-hexanethiol, 1-decanethiol, 11-ferrocenyl-1-undecanethiol) is demonstrated using conducting probe AFM (CP-AFM). Pressure is induced by an AFM tip, and simultaneously, electrical behavior is measured via detection of tunneling currents between metallic tip and substrate. The behavior is fit using a mechanical model that attempts to predict the observed junction resistance as a function of applied force with consideration for mechanical restructuring of the monolayer at higher loads. CP-AFM is also used to study self-assembled thin film of the diblock copolymer polystyrene- block-polyferrocenylsilane (PS-b-PFS) on gold substrate. Simultaneous height and electrical current imaging verify the phase separation of the two blocks of the polymer and additionally, distinguish each block due to differential conductivity. The phase separation of multi-component phospholipid bilayers (phosphatidylcholine/ sphingomyelin/ cholesterol) on supporting substrate into liquid-ordered and liquid-disordered phases is demonstrated using both topographical imaging, and the use of force map analysis through tip indentation and rupture measurements. The segregation and differential mechanical stiffness of the phases help to understand the important role of mechanical stability and rigidity membranes. An automated batch analysis process was implemented to facilitate the procedure. The mechanical properties of microfluidically produced microgels (cross-linked sodium alginate and poly(N-isopropylacrylamide)) are measured using indentation experiments, to evaluate the suitability of these gels as cell-mimics. Nanoscale heterogeneities were avoided by using a tipless cantilever. This body of work shows that the alginate content of these microgels can be varied to tune their mechanical properties and that a platform for mechanical measurement of cell and cell-mimics is possible.
307

Nanotoxicology : pulmonary toxicity studies on self-assembling rosette nanotubes

Journeay, William Shane 06 December 2007
A growing demand for information on the human health and environmental effects of materials produced using nanotechnology has led to a new area of investigation known as nanotoxicology. Research in this field has widespread implications in facilitating the medical applications of nanomaterials but also in addressing occupational and environmental toxicity concerns. Improving our understanding of these issues also has broad appeal in the stewardship of nanotechnology and its acceptance by the public. This work represents some of the early research in burgeoning field of nanotoxicology. Using a variety of in vivo and in vitro models, as well as cellular and molecular techniques I first studied a possible role for the novel cytokine endothelial monocyte activating polypeptide-II (EMAP-II) in acute lung inflammation in rats (Chapter 2). This work demonstrated a significant increase in total EMAP-II concentration in lipopolysaccharide inflamed lungs as early as 1h post-treatment (P<0.05). Increased numbers of monocytes and granulocytes were also observed in lungs treated with mature EMAP-II relative to control rats (P<0.05), and the recruitment of cells did not occur via upregulation of either Interleukin-1β or Macrophage inflammatory protein-2. I further studied whether mature EMAP-II can be induced in pulmonary nanotoxicity studies by exposure to rosette nanotubes (RNT) (Chapters 3-5). In the first in vivo experiments in mice on the RNT(1)-G0 (Chapter 3) I showed an acute inflammatory response at the 50 µg dose by 24h, but this response was resolving by 7d post-exposure as evidenced by a decreased number of cells in the bronchoalveolar lavage fluid (P<0.05) and from histological examination. The results of this study indicated that water soluble and metal-free rosette nanotubes can demonstrate a favorable acute pulmonary toxicity profile in mice. Subsequently, I studied the responses of the pulmonary epithelium using the human Calu-3 cell line (Chapter 4). This experiment indicated that RNT(2)-K1 neither reduces cell viability at 1 or 5 µg/ml doses nor does it induce a dose-dependent inflammatory cytokine response in pulmonary epithelial cells in vitro. My final experiment (Chapter 5) studied the human U937 pulmonary macrophage cell line since the macrophage is one of the key defense mechanisms to encounter RNT in the lung environment. The data indicate that this cell line lacks a robust inflammatory response upon exposure to RNT and that when RNT length is changed by altering the conditions of nanotube self-assembly, cytokine release into the supernatant is not affected profoundly. Although, EMAP-II is upregulated in a lipopolysaccharide model of lung inflammation, it does not serve as a good marker of RNT exposure. The data indicate that RNT have a favourable toxicity profile and these experiments provide a framework upon which rosette nanotubes can be investigated for a range of biomedical applications. Furthermore, in light of media and scientific reports of nanomaterials showing signs of toxicity, this work demonstrates that a biologically inspired nanostructure such as the RNT can be introduced to physiological environments without acute toxicity.
308

Investigation of Nano-scale, Self-assembled, Polymeric Systems by Atomic Force Microscopy

Li, James K. 18 February 2011 (has links)
The atomic force microscope (AFM) was used to study a series of self-assembled systems: alkanethiol self-assembled monolayer (SAM), diblock copolymer thin film, solid supported lipid bilayer membrane, and microgel with double interpenetrating polymer network. In the first system, packing and restructuring of self-assembled monolayers as exhibited by several alkanethiol systems (1-hexanethiol, 1-decanethiol, 11-ferrocenyl-1-undecanethiol) is demonstrated using conducting probe AFM (CP-AFM). Pressure is induced by an AFM tip, and simultaneously, electrical behavior is measured via detection of tunneling currents between metallic tip and substrate. The behavior is fit using a mechanical model that attempts to predict the observed junction resistance as a function of applied force with consideration for mechanical restructuring of the monolayer at higher loads. CP-AFM is also used to study self-assembled thin film of the diblock copolymer polystyrene- block-polyferrocenylsilane (PS-b-PFS) on gold substrate. Simultaneous height and electrical current imaging verify the phase separation of the two blocks of the polymer and additionally, distinguish each block due to differential conductivity. The phase separation of multi-component phospholipid bilayers (phosphatidylcholine/ sphingomyelin/ cholesterol) on supporting substrate into liquid-ordered and liquid-disordered phases is demonstrated using both topographical imaging, and the use of force map analysis through tip indentation and rupture measurements. The segregation and differential mechanical stiffness of the phases help to understand the important role of mechanical stability and rigidity membranes. An automated batch analysis process was implemented to facilitate the procedure. The mechanical properties of microfluidically produced microgels (cross-linked sodium alginate and poly(N-isopropylacrylamide)) are measured using indentation experiments, to evaluate the suitability of these gels as cell-mimics. Nanoscale heterogeneities were avoided by using a tipless cantilever. This body of work shows that the alginate content of these microgels can be varied to tune their mechanical properties and that a platform for mechanical measurement of cell and cell-mimics is possible.
309

Development of Improved Graphene Production and Three-dimensional Architecture for Application in Electrochemical Capacitors

Chabot, Victor January 2013 (has links)
Increasing energy demand makes the development of higher energy storage batteries, imperative. However, one of the major advantages of fossil fuels as an energy source is they can provide variably large quantities of power when desired. This is where electrochemical capacitors can continue to carve out a niche market supplying moderate energy storage, but with high specific power output. However, current issues with carbon precursors necessitate further development. Further, production requires high temperature, energy intensive carbonization to create the active pore sites and develop the pores. Double-layer capacitive materials researched to replace active carbons generally require properties that include: very high surface area, high pore accessibility and wettability, strong electrical conductivity, structural stability, and optionally reversible functional groups that lend to energy storage through pseudocapacitive mechanisms. In recent years, nanostructured carbon materials which could in future be tailored through bottom up processing have the potential to exhibit favourable properties have also contributed to the growth in this field. This thesis presents research on graphene, an emerging 2-dimensional carbon material. So far, production of graphene in bulk exhibits issues including restacking, structural damage and poor exfoliation. However, the high chemical stability, moderate conductivity and high electroactive behaviour even with moderate exposed surface area makes them an excellent standalone material or a potential support material. Two projects presented focus on enhancing the capacitance through functionality and controlling graphene formation to enhance performance. The first study addresses graphene enhancement possible with heteroatom functionality, produced by a single step low temperature hydrothermal reduction process. The dopant methodology was successful in adding nitrogen functionality to the reduced graphene oxide basal and the effect of nitrogen type was considered. The second study addresses the need for greater control of the rGO structure on the macro-scale. By harnessing the change in interactions between the GO intermediate and final rGO sheets we were able to successfully control the assembly of graphene, creating micro and macro-pore order and high capacitive performance. Further, self assembly directly onto the current collector eliminates process steps involved in the production of EDLC electrodes.
310

Nanotoxicology : pulmonary toxicity studies on self-assembling rosette nanotubes

Journeay, William Shane 06 December 2007 (has links)
A growing demand for information on the human health and environmental effects of materials produced using nanotechnology has led to a new area of investigation known as nanotoxicology. Research in this field has widespread implications in facilitating the medical applications of nanomaterials but also in addressing occupational and environmental toxicity concerns. Improving our understanding of these issues also has broad appeal in the stewardship of nanotechnology and its acceptance by the public. This work represents some of the early research in burgeoning field of nanotoxicology. Using a variety of in vivo and in vitro models, as well as cellular and molecular techniques I first studied a possible role for the novel cytokine endothelial monocyte activating polypeptide-II (EMAP-II) in acute lung inflammation in rats (Chapter 2). This work demonstrated a significant increase in total EMAP-II concentration in lipopolysaccharide inflamed lungs as early as 1h post-treatment (P<0.05). Increased numbers of monocytes and granulocytes were also observed in lungs treated with mature EMAP-II relative to control rats (P<0.05), and the recruitment of cells did not occur via upregulation of either Interleukin-1β or Macrophage inflammatory protein-2. I further studied whether mature EMAP-II can be induced in pulmonary nanotoxicity studies by exposure to rosette nanotubes (RNT) (Chapters 3-5). In the first in vivo experiments in mice on the RNT(1)-G0 (Chapter 3) I showed an acute inflammatory response at the 50 µg dose by 24h, but this response was resolving by 7d post-exposure as evidenced by a decreased number of cells in the bronchoalveolar lavage fluid (P<0.05) and from histological examination. The results of this study indicated that water soluble and metal-free rosette nanotubes can demonstrate a favorable acute pulmonary toxicity profile in mice. Subsequently, I studied the responses of the pulmonary epithelium using the human Calu-3 cell line (Chapter 4). This experiment indicated that RNT(2)-K1 neither reduces cell viability at 1 or 5 µg/ml doses nor does it induce a dose-dependent inflammatory cytokine response in pulmonary epithelial cells in vitro. My final experiment (Chapter 5) studied the human U937 pulmonary macrophage cell line since the macrophage is one of the key defense mechanisms to encounter RNT in the lung environment. The data indicate that this cell line lacks a robust inflammatory response upon exposure to RNT and that when RNT length is changed by altering the conditions of nanotube self-assembly, cytokine release into the supernatant is not affected profoundly. Although, EMAP-II is upregulated in a lipopolysaccharide model of lung inflammation, it does not serve as a good marker of RNT exposure. The data indicate that RNT have a favourable toxicity profile and these experiments provide a framework upon which rosette nanotubes can be investigated for a range of biomedical applications. Furthermore, in light of media and scientific reports of nanomaterials showing signs of toxicity, this work demonstrates that a biologically inspired nanostructure such as the RNT can be introduced to physiological environments without acute toxicity.

Page generated in 0.096 seconds