• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 106
  • 29
  • 13
  • 9
  • 6
  • 5
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 270
  • 270
  • 142
  • 85
  • 63
  • 53
  • 26
  • 23
  • 21
  • 19
  • 19
  • 17
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

2-Iodoxybenzoic Acid: Acidity Investigations and The Total Synthesis of 5,14-bis-epi-Spirovibsanin A

Mr Michael Gallen Unknown Date (has links)
No description available.
142

2-Iodoxybenzoic Acid: Acidity Investigations and The Total Synthesis of 5,14-bis-epi-Spirovibsanin A

Mr Michael Gallen Unknown Date (has links)
No description available.
143

2-Iodoxybenzoic Acid: Acidity Investigations and The Total Synthesis of 5,14-bis-epi-Spirovibsanin A

Mr Michael Gallen Unknown Date (has links)
No description available.
144

2-Iodoxybenzoic Acid: Acidity Investigations and The Total Synthesis of 5,14-bis-epi-Spirovibsanin A

Mr Michael Gallen Unknown Date (has links)
No description available.
145

Natural Product Studies of Terrestrial and Marine Organisms

Dias, Daniel Anthony, danieldias@iprimus.com.au January 2009 (has links)
This thesis describes the isolation and structure elucidation of ten novel secondary metabolites from one fungus (Pycnoporus cinnabarinus), four lichens (Chrysothrix xanthina, Candelaria concolor, Ramalina glaucescens and Xanthoria parietina), three algae (Plocamium mertensii, Laurencia filiformis and Laurencia elata), two plants (Haemodorum simplex and Dianella callicarpa) and one sponge (Dactylospongia sp). The structures of these isolated compounds were elucidated by a combination of spectroscopic and chemical methods. This thesis also reports two new crystal structures, the identification of two new methylsilylated derivatives as well as the isolation of thirty seven previously reported compounds in which the complete structural assignment by one and two dimensional nuclear magnetic resonance spectroscopy (NMR) has been carried out on known compounds with incomplete or no NMR spectroscopic data. Furthermore, detailed spectroscopic analyses resulted in the re assignment of 1H and 13C chemical shifts for several previously isolated natural products. The biological screening (antimicrobial, antiviral and antitumor assays) of crude extracts and isolated natural products has also been presented. The application of chemical profiling techniques including GCxGC and high pressure liquid chromatography-nuclear magnetic resonance (HPLC-NMR) were utilised to assist with the natural product dereplication process (chemical profiling), monitor chemical degradations in situ and to identify the presence of new natural products and artefacts. In total, fifteen separate terrestrial and marine organisms were investigated.
146

2-Iodoxybenzoic Acid: Acidity Investigations and The Total Synthesis of 5,14-bis-epi-Spirovibsanin A

Mr Michael Gallen Unknown Date (has links)
No description available.
147

2-Iodoxybenzoic Acid: Acidity Investigations and The Total Synthesis of 5,14-bis-epi-Spirovibsanin A

Mr Michael Gallen Unknown Date (has links)
No description available.
148

Natural product guided antibacterial drug discovery : tetramates as core scaffolds

Panduwawala, Tharindi January 2016 (has links)
This thesis describes the synthesis and biological evaluation of a library of compounds containing the tetramic acid core in search of novel antibacterial drug candidates. Chapter 1 discusses the need for new antibiotics due to the emergence of virulent bacterial strains resistant to clinically available drugs and the hiatus in the discovery of new replacement antibitoics that has become a global threat to human health. Different platforms for antibacterial drug discovery and the re-emergence of natural products-based approach that has gained importance in the quest for novel antibiotics are discussed. In this regard, the intrinsic antibacterial activity of natural products containing a tetramate core structure and the strategies developed to synthesise the core scaffold are described. Chapter 2 discusses the use of ʟ-serine and ʟ-cysteine in tetramic acid synthesis and the application of ʟ-cysteine-derived thiazolidine templates suitable for stereoselective ring closing reactions to obtain the tetramic acid core with scope for further functionalization. Chapters 3 and 4 describe a range of synthetic routes for appropriate substitutions of the tetramate core for compound library generation. Elaboration of the tetramate core via carboxamide tetramate synthesis, Suzuki-Miyaura cross-coupling reactions, glycosylations and their aglycone analogue synthesis, etherification, tetramate-pyroglutamate systems, Buchwald aminations/amidations, cycloadditions and β-lactam hybrids as possible chemical modifications of the tetramate core structure are discussed. Chapter 5 describes the antibacetiral activity and physicochemical properties of the library of compounds synthesised. A preliminary evaluation of their antibiotic activity was conducted against S. aureus and E. coli using the hole-plate method. MICs of the tetramates synthesised were determined against several Gram-negative strains; Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Gram-positive strains; MRSA, Enterococcus faecalis and Streptococcus pneumoniae, in whole-cell bioassays. Physicochemical properties of the compound library were analysed to map the chemical space occupied by tetramates with potent antibacterial activity. Enzyme inhibition studies were conducted to identify possible modes of action that contribute to whole-cell antibiotic activity and in this regard, the inhibition of enzymes S. aureus topoisomerase IV, S. aureus RNA polymerase, E. coli RNA polymerase, E. coli gyrase and M. tuberculosis gyrase are discussed. Since plasma protein binding of compounds is an important factor that determines the bioavailability of antibiotics and their clinical outcome, a study of the binding affinity of these drug candidates to Human Serum Albumin (HSA) by both whole-cell bioassay and NMR spectroscopy-based protein binding experiments are discussed. Finally, a brief note on the potential of tetramic acids to function as proteasome inhibitors in anticancer chemotherapy is included at the end of this chapter.
149

A novel synthetic route towards anti-inflammatory mediator : Resolvin E1

Pearson, Danielle L. January 2018 (has links)
The health benefits of fish oil supplementations have been proven to be effective by several studies which are discussed in this thesis. It was found that these compounds had potent anti-inflammatory properties and since then has prompted much research into the use of these compounds as potential treatments for chronic inflammation based diseases, where the overuse of current anti-inflammatory drugs cause many problems with undesired side-effects. The aim of this research is to study the bioactivity of resolvin E1 and various analogues, and to determine a novel route towards resolvin E1 natural product so that bioactivity tests may be conducted in comparison of synthetically produced resolvin E1 and naturally extracted resolvin E1. The initial aim of this research was to develop a range of analogues of a fragment of Resolvin E1. This was so that a series of compounds could be produced with various R groups to identify any structure-activity relationships for this part of the natural product. There is one stereocentre in this fragment of resolvin E1 and it was decided that a racemic version of these compounds would be tested for bioactivity, and if any of the compounds had significant anti-inflammatory properties then the R and S versions could be separated, allowing for the testing of both enantiomers to determine which gave the most potent anti-inflammatory response. This led to the creation of several novel fragments and their biological testing. The secondary aim of the project was to complete the total synthesis of the resolvin E1 natural product. We devised a novel route towards resolvin E1 which used MIDA boronate protecting group to introduce a fixed trans double bond which was useful in a compound with multiple alkene systems. Resolvin E1 also contains three stereocentres, the synthesis from the fragment work was recycled to begin the synthesis, and made use of 1,2:5,6-di-O-isopropylidene-D-mannitol and Noyori s catalyst to setup the stereocentres. The use of new MIDA-boronate moieties were also explored in order to develop a new, efficient synthesis toward resolvin E1.
150

Synthesis studies towards daphlongeranine B

Källström, Jan Eddy Adolf January 2013 (has links)
This thesis describes the development of a synthetic route towards daphlongeranine B, an alkaloid isolated from the fruits of Daphniphyllum longeracemosum, by utilising an intramolecular Michael addition to form its unique tricyclic core. <strong>Chapter 1</strong> gives a general introduction to the family of Daphniphyllum alkaloids together with some recent examples, from the literature, illustrating some synthetic attempts towards structurally similar alkaloids. This chapter also features our retrosynthetic analysis of daphlongeranine B. <strong>Chapter 2</strong> details the synthesis of the model spirocyclic enone 72 which was the vital building block needed to investigate the key intramolecular Michael addition. This key reaction was then successfully validated and access to the unique tricyclic core 64 of daphlongeranine B was made possible. <strong>Chapter 3</strong> expands the scope of the key intramolecular Michael addition step. This chapter first describes a synthetic route to the Î2-substituted spirocyclic enone 112 and subsequently validates the key intramolecular Michael addition step to give the tricyclic core 138 of daphlongeranine B. <strong>Chapter 4</strong> details a synthetic route towards the spirocyclic fragment 141 by utilising a Baker's yeast reduction and a tandem addition/cyclisation reaction.

Page generated in 0.0847 seconds