1 |
Simplified Model and Numerical Analysis of Multi-layered Piezoelectric DiaphragmYao, Lin-Quan, Lu, Li 01 1900 (has links)
The validity of the dynamic analysis based on simplified plate model was investigated using of FE-codes ANSYS in the present paper. The simplified clamped multi-layered plate model was first verified by comparison with the exact model. The simply supported plate model was confirmed to be not a suitable model due to its large error as comparing with exact model. Influence of dimensions of laminar diaphragm on nature frequencies was studied. Deflection and voltage response driven by mechanical and electric loads were described. The optimized thickness ratio of PZT layer to SiO₂ and Si layers was given in the paper to obtain the best deflection export of actuator in design. / Singapore-MIT Alliance (SMA)
|
2 |
Study of Ultrasonic Treatment of Clostridium on Bio-hydrogen Producing EffectKuo, Huan-Chen 29 August 2012 (has links)
The resources on earth are limited; thus, the demand for energy, goods and materials is surging because of the growth of the advanced technology and population. The issues of using the resources effectively and changing them into a useful energy are then important. Taiwan creates a vast amount of agricultural waste every year. The traditional way of eliminating the agricultural waste would be burned and buried. However, it is not only the agricultural waste cannot be reused and recycled, but also the problem of air pollution occurred. The objectives of this thesis are thus to transfer the agricultural waste into a useful energy.
This study contents two parts. The first part changes the agricultural waste into sugar. The agricultural waste is full of wood fiber and can be transformed to sugar by a microorganism method. A cane which is a common agricultural waste is used; the wood fiber in cane will be added to the thermostable cellulolytic bacterial Geobacillus thermoleovorans T4 isolated from sugar refinery wastewater in southern Taiwan. T4 can convert wood fiber into sugar. Experimental results showed that the rate of reducing sugar is 13.77%. The second part studies the biological hydrogen production by Clostridium acetobutylicum ATCC 824, and the sugar will be added into the process. Also, this study uses ultrasonic treatment in the biological hydrogen production and calculates the natural frequency of ATCC 824. The experiment is designed using the Taguchi method for increasing hydrogen production, hydrogen production rate and hydrogen production efficiency by using an ultrasonic treatment to treat C. acetobutylicum ATCC 824. It is showed that the best combination is temperature 37¢XC, ultrasonic frequency 0.5 MHz, ultrasonic intensity 136 mW/cm2, exposure time 10 s, pH 7.5 and bacterial concentration 20%. This study can apply in bio-energy and fermentation food producing.
|
Page generated in 0.0388 seconds