• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 203
  • 34
  • 32
  • 27
  • 10
  • 6
  • 5
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 380
  • 200
  • 189
  • 100
  • 94
  • 91
  • 80
  • 76
  • 76
  • 68
  • 66
  • 58
  • 57
  • 56
  • 53
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Applying Supervised Learning Algorithms and a New Feature Selection Method to Predict Coronary Artery Disease

Duan, Haoyang January 2014 (has links)
From a fresh data science perspective, this thesis discusses the prediction of coronary artery disease based on Single-Nucleotide Polymorphisms (SNPs) from the Ontario Heart Genomics Study (OHGS). First, the thesis explains the k-Nearest Neighbour (k-NN) and Random Forest learning algorithms, and includes a complete proof that k-NN is universally consistent in finite dimensional normed vector spaces. Second, the thesis introduces two dimensionality reduction techniques: Random Projections and a new method termed Mass Transportation Distance (MTD) Feature Selection. Then, this thesis compares the performance of Random Projections with k-NN against MTD Feature Selection and Random Forest for predicting artery disease. Results demonstrate that MTD Feature Selection with Random Forest is superior to Random Projections and k-NN. Random Forest is able to obtain an accuracy of 0.6660 and an area under the ROC curve of 0.8562 on the OHGS dataset, when 3335 SNPs are selected by MTD Feature Selection for classification. This area is considerably better than the previous high score of 0.608 obtained by Davies et al. in 2010 on the same dataset.
232

Optimalizace trasy při revizích elektrospotřebičů / Route optimalization of inspectory technician

Rusín, Michal January 2008 (has links)
Objective of this thesis is optimalization of route for inspectory technician. There were described traveling Salesman problem, vehicle Routing problem and it's modifications. Problem was solved by this three heuristics: nearest neighbour algorithm, savings method and insert method.
233

Algoritmo kNN para previsão de dados temporais: funções de previsão e critérios de seleção de vizinhos próximos aplicados a variáveis ambientais em limnologia / Time series prediction using a KNN-based algorithm prediction functions and nearest neighbor selection criteria applied to limnological data

Carlos Andres Ferrero 04 March 2009 (has links)
A análise de dados contendo informações sequenciais é um problema de crescente interesse devido à grande quantidade de informação que é gerada, entre outros, em processos de monitoramento. As séries temporais são um dos tipos mais comuns de dados sequenciais e consistem em observações ao longo do tempo. O algoritmo k-Nearest Neighbor - Time Series Prediction kNN-TSP é um método de previsão de dados temporais. A principal vantagem do algoritmo é a sua simplicidade, e a sua aplicabilidade na análise de séries temporais não-lineares e na previsão de comportamentos sazonais. Entretanto, ainda que ele frequentemente encontre as melhores previsões para séries temporais parcialmente periódicas, várias questões relacionadas com a determinação de seus parâmetros continuam em aberto. Este trabalho, foca-se em dois desses parâmetros, relacionados com a seleção de vizinhos mais próximos e a função de previsão. Para isso, é proposta uma abordagem simples para selecionar vizinhos mais próximos que considera a similaridade e a distância temporal de modo a selecionar os padrões mais similares e mais recentes. Também é proposta uma função de previsão que tem a propriedade de manter bom desempenho na presença de padrões em níveis diferentes da série temporal. Esses parâmetros foram avaliados empiricamente utilizando várias séries temporais, inclusive caóticas, bem como séries temporais reais referentes a variáveis ambientais do reservatório de Itaipu, disponibilizadas pela Itaipu Binacional. Três variáveis limnológicas fortemente correlacionadas são consideradas nos experimentos de previsão: temperatura da água, temperatura do ar e oxigênio dissolvido. Uma análise de correlação é realizada para verificar se os dados previstos mantem a correlação das variáveis. Os resultados mostram que, o critério de seleção de vizinhos próximos e a função de previsão, propostos neste trabalho, são promissores / Treating data that contains sequential information is an important problem that arises during the data mining process. Time series constitute a popular class of sequential data, where records are indexed by time. The k-Nearest Neighbor - Time Series Prediction kNN-TSP method is an approximator for time series prediction problems. The main advantage of this approximator is its simplicity, and is often used in nonlinear time series analysis for prediction of seasonal time series. Although kNN-TSP often finds the best fit for nearly periodic time series forecasting, some problems related to how to determine its parameters still remain. In this work, we focus in two of these parameters: the determination of the nearest neighbours and the prediction function. To this end, we propose a simple approach to select the nearest neighbours, where time is indirectly taken into account by the similarity measure, and a prediction function which is not disturbed in the presence of patterns at different levels of the time series. Both parameters were empirically evaluated on several artificial time series, including chaotic time series, as well as on a real time series related to several environmental variables from the Itaipu reservoir, made available by Itaipu Binacional. Three of the most correlated limnological variables were considered in the experiments carried out on the real time series: water temperature, air temperature and dissolved oxygen. Analyses of correlation were also accomplished to verify if the predicted variables values maintain similar correlation as the original ones. Results show that both proposals, the one related to the determination of the nearest neighbours as well as the one related to the prediction function, are promising
234

Detektion och klassificering av äppelmognad i hyperspektrala bilder / Detection And Classification Of Apple Ripening In Hyperspectral Images

Andersson, Fanny, Furugård, Anna January 2021 (has links)
Detta arbete presenterar en icke-destruktiv metod för att detektera och klassificera mognadsgraden hos äpplen med användning av hyperspektrala bilder. Fastställning av mognadsgraden hos äpplen är intressant för bland annat äppelodlare och musterier vid lagring och beredning. Äpplens mognadsgrad är även intressant inom växtförädling. För att fastställa mognadsgraden idag krävs att det skärs i frukten, en så kallad destruktiv metod. Hyperspektrala bilder kan idag användas inom områden som jordbruk, miljöövervakning och militär spaning. / <p>Examensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet</p>
235

Potlačování šumu v řečových signálech za pomocí zpracování "atraktorů" / Noise suppression in speech signals with the aid of "attractor" processing

Linhart, Tomáš January 2008 (has links)
Speech signal is being used in the meaning of nonlinear dynamic system. As such, it is transform to multidimensional phase space, where filtration method based on time series neighbors of analysed signal is used. For embedding phase space methods time delay and false nearest neighbors are applied.
236

Učení založené na instancích / Instance based learning

Martikán, Miroslav January 2009 (has links)
This thesis is specialized in instance based learning algorithms. Main goal is to create an application for educational purposes. There are instance based learning algorithms (IBL), nearest neighbor algorithms and kd-trees described theoretically in this thesis. Practical part is about making of tutorial application. Application can generate data, classified them with nearest neighbor algorithm and is able of IB1, IB2 and IB3 algorithm testing.
237

Systém pro rozpoznávání APT útoků / System for Detection of APT Attacks

Hujňák, Ondřej January 2016 (has links)
The thesis investigates APT attacks, which are professional targeted attacks that are characterised by long-term duration and use of advanced techniques. The thesis summarises current knowledge about APT attacks and suggests seven symptoms that can be used to check, whether an organization is under an APT attack. Thesis suggests a system for detection of APT attacks based on interaction of those symptoms. This system is elaborated further for detection of attacks in computer networks, where it uses user behaviour modelling for anomaly detection. The detector uses k-nearest neighbors (k-NN) method. The APT attack recognition ability in network environment is verified by implementing and testing this detector.
238

Klasifikace vozidel na základě odezvy indukčních senzorů / Vehicle classification using inductive loops sensors

Halachkin, Aliaksei January 2017 (has links)
This project is dedicated to the problem of vehicle classification using inductive loop sensors. We created the dataset that contains more than 11000 labeled inductive loop signatures collected at different times and from different parts of the world. Multiple classification methods and their optimizations were employed to the vehicle classification. Final model that combines K-nearest neighbors and logistic regression achieves 94\% accuracy on classification scheme with 9 classes. The vehicle classifier was implemented in C++.
239

Sledování pohybu objektů v obrazovém signálu / Tracking the movement of objects in the video signal

Šidó, Balázs January 2017 (has links)
Tato diplomova prace se zameruje na sledovani pohybu vice objektu. Prace popisuje dve implementace filtru, ktere jsou v podstate zalozeny na principu Kalmanova filtru. Obe implementace jsou zalozeny na principu sledovani vice objektu, na zaklade znalosti pozic vsech objektu v kazdem snimku. Prvni implementace je smisena verze Globalniho a Standardniho filtru nejblizsich sousedu. Druha implementace je postavena na pravde- podobnostnim pristupu k procesu sdruzeni. Posledni kapitola poskytuje srovnani mezi temito filtry a Zakladnim filtrem. Algoritmy byly realizovany v jave.
240

Contributions to unsupervised learning from massive high-dimensional data streams : structuring, hashing and clustering / Contributions à l'apprentissage non supervisé à partir de flux de données massives en grande dimension : structuration, hashing et clustering

Morvan, Anne 12 November 2018 (has links)
Cette thèse étudie deux tâches fondamentales d'apprentissage non supervisé: la recherche des plus proches voisins et le clustering de données massives en grande dimension pour respecter d'importantes contraintes de temps et d'espace.Tout d'abord, un nouveau cadre théorique permet de réduire le coût spatial et d'augmenter le débit de traitement du Cross-polytope LSH pour la recherche du plus proche voisin presque sans aucune perte de précision.Ensuite, une méthode est conçue pour apprendre en une seule passe sur des données en grande dimension des codes compacts binaires. En plus de garanties théoriques, la qualité des sketches obtenus est mesurée dans le cadre de la recherche approximative des plus proches voisins. Puis, un algorithme de clustering sans paramètre et efficace en terme de coût de stockage est développé en s'appuyant sur l'extraction d'un arbre couvrant minimum approché du graphe de dissimilarité compressé auquel des coupes bien choisies sont effectuées. / This thesis focuses on how to perform efficiently unsupervised machine learning such as the fundamentally linked nearest neighbor search and clustering task, under time and space constraints for high-dimensional datasets. First, a new theoretical framework reduces the space cost and increases the rate of flow of data-independent Cross-polytope LSH for the approximative nearest neighbor search with almost no loss of accuracy.Second, a novel streaming data-dependent method is designed to learn compact binary codes from high-dimensional data points in only one pass. Besides some theoretical guarantees, the quality of the obtained embeddings are accessed on the approximate nearest neighbors search task.Finally, a space-efficient parameter-free clustering algorithm is conceived, based on the recovery of an approximate Minimum Spanning Tree of the sketched data dissimilarity graph on which suitable cuts are performed.

Page generated in 0.0446 seconds