• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 5
  • 3
  • 1
  • Tagged with
  • 22
  • 22
  • 22
  • 14
  • 13
  • 11
  • 11
  • 11
  • 11
  • 10
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Retrofitting a Single-family Home with Increased Use of Renewable Energy

Ma, Chenwen January 2017 (has links)
Buildings account for up to 40% of the total energy use in the world. Directives from the European Union have pointed out the significance of increasing the energy efficiency in buildings. New regulation in countries like Sweden has established that new buildings should fulfil regulations of Nearly Zero Energy Buildings (NZEB), providing the opportunity for renewable energy technologies to achieve these goals. In this paper, the retrofitting potential of renewable energy technologies for a single-family home in Sweden was investigated.The present work studied the characteristics of several renewable energy technologies and their applications for a single-family home in Sweden, including biomass, solar photovoltaics, solar thermal, heat pump, and small-scale wind turbine. Three renewable energy technologies (solar thermal, heat pump and small-scale wind turbine) and one renovation method (window) were selected to investigate. The analysis was made of the current energy use and the potential energy (and cost) savings from each retrofitting of these facilities by means of simulation models using IDA ICE software. The study results show that the proposed renewable energy technologies are technically feasible and economically viable as a source of alternative renewable energy in order to produce clean energy and reduce electricity bills for an electric-heated single-family home located in Sweden. Moreover, the combined retrofitting scheme consist of solar thermal system and window renovation was also proposed and explored. As a result the energy performance of the single-family home would satisfy the nearly-zero energy building requirements and thermal comfort could be maintained at an acceptable level.
12

Ολιστική ενεργειακή θεώρηση κτιρίων

Σακκά, Αγγελική 06 November 2014 (has links)
Στις χώρες της Ευρωπαϊκής Ένωσης ο κτιριακός τομέας απορροφά περίπου το 40% της συνολικής ενεργειακής κατανάλωσης, γεγονός που καθιστά απαραίτητο το λειτουργικό και φιλικό προς το περιβάλλον σχεδιασμό των κτιρίων, παράλληλα με τον περιορισμό των συνολικών ενεργειακών αναγκών τους για την εξοικονόμηση ενέργειας. Όσον αφορά τα ήδη υπάρχοντα κτίρια, μπορούν να γίνουν διάφορες παρεμβάσεις ώστε να επιτευχθεί η μέγιστη δυνατή εξοικονόμηση ενέργειας. Από την άλλη, η Ε.Ε.,στα πλαίσια της βιώσιμης ανάπτυξης και της προστασίας του περιβάλλοντος, έχει θέσει ως στόχο για το 2020 τα καινούρια κτίρια να είναι μηδενικών εκπομπών διοξειδίου του άνθρακα. Για την υλοποίηση του στόχου αυτού, είναι αναγκαίος ο σχεδιασμός των κτιρίων σύμφωνα με τις αρχές της βιοκλιματικής αρχιτεκτονικής, για την ελαχιστοποίηση των ενεργειακών τους αναγκών αλλά και η εφαρμογή συστημάτων Ανανεώσιμων Πηγών Ενέργειας για την παραγωγή θερμικής και ηλεκτρικής ενέργειας και την ελαχιστοποίηση έτσι των εκπομπών CO2 στην ατμόσφαιρα από τα ορυκτά καύσιμα. Στην παρούσα διπλωματική εργασία, αναπτύσσονται στρατηγικές που αποσκοπούν στην αρμονική ένταξη των κτιρίων στο φυσικό περιβάλλον, παρουσιάζονται τα θέματα εξοικονόμησης ενέργειας στα κτίρια, διατυπώνονται οι βασικές παράμετροι για την επίτευξη ολιστικής ενεργειακής κάλυψης των κτιρίων και την προετοιμασία του επόμενου βήματος σχετικά με την ενέργεια στα κτίρια για το έτος 2020 και δίνονται νέες τεχνολογικές λύσεις που αναπτύχθηκαν στο εργαστήριο ηλιακής ενέργειας, με σκοπό την βέλτιστη αξιοποίηση της ηλιακής ενέργειας και των άλλων ΑΠΕ στα κτίρια. Στα πλαίσια της πλήρους κάλυψης των κτιριακών ενεργειακών αναγκών από ΑΠΕ και της προώθησης των κτιρίων σχεδόν μηδενικής κατανάλωσης από συμβατικές ενεργειακές πηγές, μελετάται πειραματικά η συμβολή των φωτοβολταϊκών σε δυσμενή κλίση και προσανατολισμό. Εξετάζεται η συνεισφορά διάχυτων ανακλαστήρων στην ενεργειακή τους απόδοση, η επίδραση του υλικού της θερμομόνωσης και του περιορισμού των θερμικών απωλειών. Τέλος, εξετάζεται η αξιοποίηση κάθε τμήματος του κτιρίου που μπορεί να έχει θετική συμβολή στο ενεργειακό θέμα. Έτσι προτείνονται τρόποι τοποθέτησης φωτοβολταϊκών σε οριζόντιες και επικλινείς στέγες και στις προσόψεις των κτιρίων, με προσθήκη ανακλαστήρα όπου είναι δυνατό, που μπορούν να συνεισφέρουν στην επίτευξη μηδενικού ενεργειακού ισοζυγίου στα κτίρια. / In the countries of the European Union the building sector accounts for about 40% of the total energy consumption, so it is necessary that the buildings should be designed in a functional and environmentally-friendly way, in addition to the minimization of of the total energy needs to achieve energy savings. As for the existing buildings, they should be renovated so that maximum energy savings is achieved. On the other hand, the EU’s target for 2020 is that new buildings must be of zero carbon dioxide emissions. For the implementation of this goal, buildings should be designed according to the principles of bioclimatic architecture to minimize energy needs, but also systems of Renewable Energy Sources should be applied to produce thermal energy and electricity, in order to minimize carbon dioxide emissions from fossil fuels. In the present thesis, strategies aiming to harmonic integration of buildings in the natural environment are developed, holistic energy saving aspects for buildings are presented, aspects regarding the next step to the target for 2020 are given, and some new designs of building integrated RES, investigated at the Solar Energy Laboratory, are suggested. Approaching the holistic contribution of the renewable energy sources (RES) to buildings for total cover of their energy demand, and the achievement of nearly zero energy buildings, the contribution of photovoltaics in disadvantageous inclination and azimuth angle is experimentally studied. The contribution of diffuse reflectors to pV’s energy efficiency, the impact of thermal insulation materials and the impact of limitating the thermal losses to PV’s operation, are studied as well. Furthermore, the use of every single part of the building in order to contribute to its energy supply, is considered. Designs for photovoltaic integration on horizontal and inclined roofs and facades are suggested, combined with booster reflector if possible, aiming to achieve zero energy balance of buildings.
13

Vzduchotechnika pro budovy s téměř nulovou spotřebou energie / Ventilation of nearly Zero Energy Building

Frčka, Lukáš January 2020 (has links)
This diploma thesis is focused on nearly zero energy buildings, which are a mandatory part of construction of the buildings in Czech republic after 2020. It also deals with HVAC and its design as part of these buildings. The theoretical part deals with legal and technical regulations and possible savings in HVAC systems. The computational part is focused on two solution of HVAC systems in given object. The project part is about the given object, which is otevřená zahrada Brno. This building was founded by Nadace Partnerství s.r.o.. This third part of diploma thesis deals with the quality of indoor microclimate and evaluation of the heat recovery system effiency, which is applied in local HVAC unit.
14

Tepelně technické posouzení stavebních konstrukcí / Thermal technical assessment of building structures

Paďouk, Jaroslav January 2016 (has links)
This theoretical diploma thesis deals with „nearly zero energy buildings“. The aim of the thesis is to evaluate building constructions based on their impact on thermal requirements fulfilment and apply results of the evaluation on a design of a nearly zero energy building. The thesis describes individual factors impacting energy consumption of a nearly zero house building, evaluates individual types of insulations systems for roof constructions, analyses window details, foundation details and connection of roof and external wall or the floor structure and external wall. The basic criteria for the evaluation is the fulfilment of the thermal requirements as well as the costs of the construction itself and energy consumption for the individual construction or detail. The specialized part of the thesis deals with design and comparison of 2 types of timber roof truss systems, the purlin roof and the collar roof. The suitability of the roof systems for nearly zero energy building is evaluated as well. The result of he thesis is the proposal of solutions for the nearly zero energy building. The proposal consists of layout solutions, design of suitable construction system, load-bearing system including drawings. The output is also Energy Performance Certificate.
15

Technická zařízení budov v budovách s téměř nulovou spotřebou. / Building services of near zero energy bulildings

Fikejsl, Tomáš January 2017 (has links)
The thesis deals with the issue will be nearly zero energy. The theoretical part is divided into several chapters. Describes the requirements of applicable legislation of the Czech Republic and the EU and the application of renewable energy in these buildings. The third and last part serves as a basis for part of the experiment. Calculation section applies theoretical knowledge into practice. The subject has become a new residential building in which they are designed to ensure the technical equipment required internal environment. The proposal concerns the heating, ventilation, cooling, domestic hot water and lighting. At the end are attached graphic of energy performance certificates (PENB) and evaluated the economic and ecological point of view. The experiment deals with the measurement of the internal microclimate administrative building type in Brno, with regard to the requirements of current legislation of the Czech Republic.
16

Energeticky úsporná budova mateřské školy / Low-energy building of kindergarten

Nečas, Lukáš January 2022 (has links)
The aim of this project is to design a kindergarten with nearly zero energy consumption in Veřovice. The building is purposefully divided into three parts, where one part consists of locker rooms, an office, a food service and facilities for employees. The second part consists of 2 separate playrooms with a capacity for 40 children and the third part consists of the building services of the building. The project consists of three parts. The first part deals with the design of a building solution. It is a single-storey non-basement building, where the vertical load-bearing structures are made of Porotherm ceramic blocks and the horizontal load-bearing structures are designed from hollow prestressed Spiroll panels. The roof of the building is designed as a flat, warm, extensive green roof. The second part deals with the design of individual technical equipment. A ground / water heat pump is designed as a source of heat and cold. The building also uses mechanical ventilation, with heat recovery and the possibility of cooling selected rooms in the summer months. The third part consists of a detailed design of the heating system and contains a calculation of heat losses and a design of floor heating.
17

Optimalizace nákladů životního cyklu rodinných domů / Optimization of life cycle costs of family houses

Servusová, Michaela January 2022 (has links)
The theoretical part deals at the beginning with wooden buildings and suitable materials. Then information about low energy houses, passive houses and requirements for new buildings is introduced. The theoretical part of the work also summarizes the selection of the technological solution. Important part is about individual life cycle stages of the building, wear and tear of the buildings and whole life costs of the building that the investor is interested in. Practical part of the thesis consists of a case study of the wooden family house where the whole life costs of the building life cycle are solved.
18

Revitalizace víceúčelového objektu obce / Revitalization of a multi-purpose building in the village

Federla, Jakub January 2022 (has links)
The aim of master‘s thesis is to renovate old agricultural building and design it as nzeb building. The thesis contains three parts: 1st – design of the building, 2nd – design of building services, and 3rd – assessment of the impact of different operations in building on energy consumption. The results are then evaluated for economic and environmental savings. The renovated building in village Rozkoš will be used for many purposes. It will be divided into 3 parts – a multifunctional hall, a pub, and a club room. Multifunctional hall will be used for various activities for village itself or public. In the pub will be only cold kitchen with small dishes and beverages. Club room can be used for elderly people, workout or young people. The building is low rise and structural system is combined. The vertical load-bearing walls and columns are built of bricks. Horizontal load-bearing structures are cross vaults made also of bricks. Saddle roof is made of timber roof truss. The building site contains also an outdoor car park and a garden. The project was carried out in the Revit.
19

Mateřská škola / Kindergarten

Frieb, Vilém January 2022 (has links)
The aim of this master project is to design a nearly zero-energy building of kindergarten. The kindergarten is designed as one storey building with capacity of 40 children split into two playrooms. Playrooms are separated and each of them has own sanitary facilities and locker room. Playrooms have large windows with external blinds on the south to provide solar gains. There is horizontal sun breaker above the windows which prevent overheating in summer. Load bearing walls are made of sand lime blocks. Walls are insulated with mineral wool board. Roof ceiling is made of prestressed concrete slabs. The building has a flat extensive green roof. The second task of the project includes design of lighting, rainwater harvesting, HVAC, source of heat and photovoltaic system. The third part is theoretical and includes searching for an ideal source of energy for the building. There are two types of heating compared such as gas boiler and a groundwater heating pump. The main software used for the project is Revit.
20

Mateřská škola Elišky Přemyslovny / Eliška Přemyslovna Kindergarten

Herůdek, Pavel January 2022 (has links)
The subject of my diploma thesis is a design of new kindergarten and elaboration of documentation for the construction. The building is situated in the southwestern suburb of Brno, in the district Brno-Starý Lískovec district. The building is set in a slightly sloping terrain. The building has two floors and and basement, created by partial basement of the building. The building is characterized with two wings designed at right angles and a decent coloured facade. The building contains two kindergarten classrooms with a capacity of 48 children with operational facilities, a rentable part for public, the administrative of the school and a technical facilities of the building. The first floor contains two separate kindergarten classes, each with 24 children, teacher's cabinet, toy storage room and a kitchen. The kitchen is designed without food preparation, with a food delivery company. Each kindergarten class has its own entrance. On the second floor is a rentable space containing a classroom, workshop, lounge and terrace. There are also an isolation room, a gym for children and a head master's office. The building is designed to a low energy standard, definated by near zero heat energy building (nzeb) standarts. There is established a wheelchair access to the building, A lift is proposed in the building. The structural design is proposed as a ceramic block wall with contact insulation system. The vertical strucutres are made of reinforced concrete cast-in-place ceiling. The building is based on concrete foundation and is covered by a single-skin, flat roof with a layer of extensive flora.

Page generated in 0.043 seconds