• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

NO, Burnout, Flame Temperature, Emissivity, and Radiation Intensity from Oxycombustion Flames

Zeltner, Darrel Patrick 23 May 2012 (has links) (PDF)
This work produced the retrofit of an air-fired, 150 kW reactor for oxy-combustion which was then used in three oxy-combustion studies: strategic oxy-combustion design, oxy-combustion of petroleum coke, and air versus oxy-combustion radiative heat flux measurements. The oxy-combustion retrofit was accomplished using a system of mass flow controllers and automated pressure switches which allowed safe and convenient operation. The system was used successfully in the three studies reported here and was also used in an unrelated study. A study was completed where a novel high oxygen participation burner was investigated for performance while burning coal related to flame stability, NO, and burnout using a burner supplied by Air Liquide. Parameters investigated included oxygen (O2) injection location, burner swirl number and secondary carbon dioxide (CO2) flow rate. The data showed swirl can be used to stabilize the flame while reducing NO and improving burnout. Center O2 injection helped to stabilize the flame but increased NO formation and decreased burnout by reducing particle residence time. Additional CO2 flow lifted the flame and increased NO but was beneficial for burnout. High O2 concentrations up to 100% in the secondary were accomplished without damage to the burner. Petroleum coke was successfully burned using the Air Liquide burner. Swirl of the secondary air and O2 injection into the center tube of the burner were needed to stabilize the flame. Trends in the data similar to those reported for the coal study are apparent. Axial total radiant intensity profiles were obtained for air combustion and three oxy-combustion operating conditions that used hot recycled flue gas in the secondary stream. The oxygen concentration of the oxidizer stream was increased from 25 to 35% O2 by decreasing the flow rate of recycled flue gas. The decrease in secondary flow rate decreased the secondary velocity, overall swirl, and mixing which elongated the flame. Changing from air to neat CO2 as the coal carrier gas also decreased premixing which elongated the flame. Flame elongation caused increased total heat transfer from the flame. The air flame was short and had a higher intensity near the burner, while high O2 concentration conditions produced lower intensities near the burner but higher intensities and temperatures farther downstream. It was shown that oxycombustion can change flame shape, temperature and soot concentration all influencing heat transfer. Differences in gas emission appear negligible in comparison to changes in particle emission.
2

Burnout, NO, Flame Temperature, and Radiant Intensity from Oxygen-Enriched Combustion of a Hardwood Biomass

Thornock, Joshua David 01 December 2013 (has links)
Increasing concern for energy sustainability has created motivation for the combustion of renewable, CO2 neutral fuels. Biomass co-firing with coal provides a means of utilizing the scaled efficiencies of coal with the lower supply availability of biomass. One of the challenges of co-firing is the burnout of biomass particles which are typically larger than coal but must be oxidized in the same residence time. Larger biomass particles also can increase the length of the radiative region and alter heat flux profiles. As a result, oxygen injection is being investigated as a means of improving biomass combustion performance.An Air Liquide designed burner was used to investigate the impact of oxygen enrichment on biomass combustion using two size distributions of ground wood pellets (fine grind 220 µm and medium grind 500 µm mass mean diameter). Flame images were obtained with a calibrated RGB digital camera allowing a calculation of visible radiative heat flux. Ash samples and exhaust NO were collected for a matrix of operating conditions with varying injection strategies. The results showed that oxygen can be both beneficial and detrimental to the flame length depending on the momentum of the oxygen jet. Oxygen injection was found to improve carbon burnout, particularly in the larger wood particles. Low flow rates of oxygen enrichment (2 to 6 kg/hr) also produced a modest increase in NO formation up to 30%. The results showed medium grind ~500 µm mass mean diameter particle combustion could improve LOI from 30% to 15% with an oxygen flow rate of 8 kg/hr. Flame images showed low flow rates of O2 (2 kg/hr) in the center of the burner with the fine particles produced a dual flame, one flame surrounding the center oxygen jet and a second flame between the volatiles and secondary air. The flame surrounding the center oxygen jet produced a very high intensity and temperature (2100 K). This center flame can be used to help stabilize the flame, increase devolatilization rates, and potentially improve the trade-off between NO and burnout.

Page generated in 0.038 seconds