• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mixed Valence Copper(cu)/silica Nanocomposite: Synthesis, Characterization And Systematic Antimicrobial Studies

Young, Mikaeel 01 January 2013 (has links)
Copper (Cu) compounds are widely used as effective agricultural bactericides. Continuous use of these materials has led to Cu accumulation in soil over time. The United States Environmental Protection Agency (US EPA) is concerned about potential Cu contamination in the environment. Improving biocidal efficacy of Cu is an attractive alternative, allowing reduction of Cu amount per application. In this research, we focused on making watersoluble mixed-valence Copper/Silica composite nanogel (CuSiNG) material. The objective is to improve the efficacy of Cu by manipulating Cu valence states. It has been shown in the literature that Cu (0) and Cu (I) states are more potent that Cu (II) states in terms of their antimicrobial efficacy. It is hypothesized that mixed valence Cu will exhibit improved efficacy over Cu (II). A water-soluble mixed valence Cu/silica nanogel (MV-CuSiNG) composite has been synthesized and characterized. Structure, morphology, crystallinity and composition of the MV-CuSiNG material was characterized using High-Resolution Transmission Electron Microscopy (HRTEM), HRTEM Selected Area Electron Diffraction (SAED) and X-ray Photoelectron Spectroscopy (XPS). Amount of Cu loading in MV-CuSiNG composite material was estimated by Atomic Absorption Spectroscopy (AAS). To confirm presence of Cu (I) in the MV-CuSiNG material, Neocuproine (Nc, a Cu (I) specific chelator) assay was used. Antimicrobial efficacy of MVCuSiNG and CuSiNG was evaluated against X.alfalfae, B.subtilis and E.coli using Kocide® 3000 ("Insoluble Cu (II)" compound), Copper sulfate ("Soluble Cu (II)" compound) and Cuprous chloride (Copper (I) compound) as positive controls and silica "seed" particles (without Cu loading) as negative control. Antimicrobial studies included observing bacterial growth inhibition and determining the Minimum Inhibitory Concentration (MIC). Improved antimicrobial efficacy was observed in MV-CuSiNG when compared to CuSiNG and other controls. For the assessment of plant safety of MV-CuSiNG and CuSiNG materials, phytotoxicity studies were conducted using Vinca sp and Hamlin orange under environmental conditions. It was observed that MV-CuSiNG material was safe to plants at commercially used

Page generated in 0.056 seconds