• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 8
  • 1
  • Tagged with
  • 40
  • 40
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Demography and Habitat Use of Cerulean Warblers on Breeding and Wintering Grounds

Bakermans, Marja Henni 24 June 2008 (has links)
No description available.
22

Population Ecology and Foraging Behavior of Breeding Birds in Bottomland Hardwood Forests of the Lower Roanoke River

Lyons, James Edward 21 March 2001 (has links)
Nest survival often is lower at habitat edges than in habitat cores because of greater nest predation and parasitism near edges. I studied nest survival of breeding birds in bottomland hardwood forests of the lower Roanoke River, North Carolina. Nesting success was monitored in two forest width classes: narrow bands of levee forest that were dominated by two edge types, and wide, continuous levee forest stands that have edges but most forest is relatively far from edge. Nest success of Acadian Flycatchers and Prothonotary Warblers was similar in narrow and wide levees; nest success of Northern Cardinals was greater in narrow levees. Results of my study indicate that edge effects are not universal, and that amount of contrast at edges may interact with landscape context to alter ecological processes, such as nest predation. Bird populations are remarkably constant over time relative to other taxa, implying strong regulation. Avian population ecologists, however, have not studied regulatory mechanisms as often as seasonal limiting factors. Conversely, avian behavioral ecologists seldom emphasize the population dynamic consequences of habitat selection and reproductive success. This study describes the intersection of individual behavior and population regulation in the context of a new model of population regulation, site dependence, which is based on characteristics of breeding sites and behavior of individuals. I studied habitat distribution, age structure, reproductive output, and breeding site fidelity of Prothonotary Warblers (Protonotaria citrea) in two different bottomland hardwood forest habitats of the lower Roanoke River in North Carolina. Older males (³ 2 yr old) were equally common in cypress-gum swamps and mixed oak hardwood levee forest. Pairing success and success of first nests indicated that older males occupied the most suitable territories available in each habitat. Bird density was three times greater in swamps, and birds nesting in swamps averaged greater clutch sizes and fledged more young per nest than birds in levees. Greater reproductive output was the result of greater fecundity because nest survival and predation pressure appeared equal in the two habitats. Annual return rates for plot immigrants vs. previous residents did not differ in swamps. In levees, newly arriving birds were less likely to return the following year than previous residents. Immigrants most likely occupied low quality sites and dispersed in an attempt to improve breeding site quality. Habitat-specific demography and density patterns of this study indicate ideal preemptive distribution. Variance in site quality, between and within habitats, and preemptive use of sites are consistent with theory of population regulation via site dependence. Foraging behavior often reflects food availability. For example, in habitats where food availability is high, predators should move more slowly and attack prey more often than in habitats where food availability is low. I studied the foraging behavior of breeding Prothonotary Warblers in two habitat types to assess relative food availability and implications for habitat quality. The two habitats, levee and swamp forest, differ in hydrology, forest structure, and tree species composition. I quantified foraging behavior with focal animal sampling and continuous recording during foraging bouts. I measured two aspects of foraging behavior: 1) prey attacks per minute, using four attack types (glean, sally, hover, strike), and 2) number of movements per minute (foraging speed), using three types of movement (hop, short flight [£ 1 m], long flight [>1 m]). Male warblers made significantly more prey attacks per minute in swamp forest than in levee forest; the same trend was evident in females. Foraging speed, however, was not different between habitats for males or females. Results indicate that foraging effort is similar in swamps and levees, but that warblers encounter more prey in swamps. Greater food availability may be related to greater reproductive success of warblers nesting in cypress-gum swamps than in coastal plain levee forest. / Ph. D.
23

Population Dynamics of Threatened Piping Plovers on the Niobrara River, Nebraska

Friedrich, Meryl J. 11 July 2018 (has links)
Prairie rivers of the Great Plains, USA, provide important habitat for the federally threatened piping plover (“plover”, Charadrius melodus). Plovers nest on open to sparsely vegetated river sandbars, and their demographic rates are closely linked to habitat availability and quality, as well as river flow. The Niobrara River in northern Nebraska has supported 22–41% of the state’s plovers since species listing in 1986, but the population and habitat are relatively understudied, and both have declined since 2010. The objectives of this study were to understand plover demography, habitat, and the role of the Niobrara in the regional plover population. Periods of high river flow promote creation and maintenance of suitable sandbar nesting habitat, but increased river flow during the plover breeding season can decrease nest and chick survival. We estimated the effect of daily peak river flow on survival rates of 115 nests and 66 chicks on the Niobrara River, 2010–2016, using logistic exposure and Cormack-Jolly-Seber models, respectively. We monitored 1,874 banded hatch-year and adult birds across the regional population (Niobrara River, Lewis and Clark Lake, Gavins Point Reach segment of the Missouri River), and used multi-state mark-recapture models to estimate survival and inter-annual dispersal probabilities among sites relative to habitat availability. We developed land cover datasets from high-resolution aerial imagery to quantify suitable habitat and compare the relative effects of habitat characteristics on nest-site selection and nest success for a subset of years (2010, 2012, 2014, and 2016) using logistic regression models. We included data from a sympatric nester with similar nesting habitat needs, the interior least tern (“tern”, Sternula antillarum athalassos), to improve precision of our models. We compared 63 plover and 92 tern nests to 292 random unused points, and 73 successful (hatched ≥1 egg) to 79 failed nests. Low nest and chick survival and high emigration from the Niobrara appear to be important factors contributing to population decline. Daily nest and chick survival were negatively related to river flow. Nest-site selection was based primarily on distance to the river bank (i.e., the nearest potential source of predators), yet flooding (eggs submerged or washed out of the nest bowl during increased river flow) caused at least as many nest failures as predation. Nests predominantly were surrounded by dry sand habitat, indicating some degree of flood avoidance, but were no farther from water than random, and drier nest sites were no less likely to fail. Dispersal occurred throughout the regional population, but plovers were more likely to leave the Niobrara than to enter it. Expansive flood-created sandbars on the Missouri River, concurrent with a trend towards more vegetated and saturated habitat on the Niobrara, may have drawn birds from the Niobrara population, especially those that dispersed to the Niobrara during sustained Missouri River flooding 2010–2011. The outsized negative effect of flooding on nest success, the lack of protection afforded by dry sand nest sites, and selection for nesting habitat based more strongly on predator avoidance than flood avoidance suggest that plovers may have face more frequent and intense levels of breeding season flooding than is typical. Identifying and promoting the processes that contribute to creation and maintenance of high-elevation sandbars on the Niobrara is an important next step towards effective management of nesting birds. / Master of Science / Prairie rivers of the Great Plains, USA, provide important habitat for a federally threatened shorebird, the piping plover (“plover”, Charadrius melodus). During their breeding season (April–August), plovers nest and raise chicks on open to sparsely vegetated areas of river sandbars, and their survival and reproductive success are closely tied to amount and quality of sandbar habitat. The number of plovers on the Niobrara River in northeast Nebraska has declined since 2010, and in this study our objectives were to monitor nests, chicks, and adult birds to document plover survival, movement among neighboring sites, reproductive success, and habitat changes on the Niobrara from 2010–2016. Because plovers nest on the sand, they can lose nests and chicks when river flow increases and washes over sandbars (“flooding”). We found that nest and chick survival sharply decreased when river flow was high. Plovers chose nest sites in dry sand areas, which are typically the tallest part of a sandbar and most protected from flooding, but these nests were no more likely to hatch than those in areas with wetter (lower elevation) sand. Plovers primarily chose nest sites far from the river bank, which was the nearest potential source of predators, yet flooding caused at least as many nest failures as predation. Plovers moved between the Niobrara and nearby Missouri River, but overall were much more likely to leave the Niobrara than to enter it. Expansive sandbar creation on the Missouri River, concurrent with a trend towards lower-quality (more vegetated and saturated) habitat on the Niobrara, may have drawn birds from the Niobrara population, especially those displaced from the Missouri during sustained flooding 2010–2011. Movement to the Missouri River and low nest and chick survival due to flooding contributed to population decline on the Niobrara. The outsized effect of flooding on nest success, the lack of protection afforded by dry sand nest sites, and selection for nesting habitat based more strongly on predator avoidance than flood avoidance suggests that plovers face more frequent and intense levels of breeding season flooding than is typical. Identifying and promoting the processes that contribute to creation and maintenance of high-elevation sandbars on the Niobrara is an important next step towards effective management of nesting birds.
24

Reproductive ecology and latitudinal variation of three cavity nesting duck species in Eastern United States

Mentges, Hunter Elijah 13 August 2024 (has links) (PDF)
Survival of females, nests, and ducklings strongly influence annual recruitment in North American ducks. Studies of cavity-nesting ducks using nest boxes, such as wood ducks (Aix sponsa), hooded merganser (Lophodytes cucullatus) and black-bellied whistling duck (Dendrocygna autumnalis) historically have investigated extrinsic factors, such as nest predation, and how it influenced nest success. For my study, I evaluated data from 1,403 monitored nest boxes collected from eight states, 2020–2022. I studied intrinsic characteristics related to reproduction, such as egg and clutch sizes, and eggshell strength in the 3 cavity-nesting ducks. Variables including clutch size, egg mass, parasitism, and onset of incubation influenced reproductive success of wood ducks. Latitude also influenced clutch size in wood ducks, where for every 14.3° increase in latitude, I found one more egg per clutch. Hooded mergansers had the strongest eggshells and eggshell composition varied across latitude in hooded merganser, but not in wood ducks.
25

Breeding biology and habitat associations of the Altamira Oriole and Northern Beardless-Tyrannulet in the Lower Rio Grande Valley, Texas

Werner, Scott Michael 15 November 2004 (has links)
I studied the breeding biology and nesting ecology of the Altamira Oriole (Icterus gularis) and Northern Beardless-Tyrannulet (Camptostoma imberbe), two songbirds inhabiting remnant tracts of Tamaulipan brushland of the Lower Rio Grande Valley, Texas during 2002-2003. I found 76 active oriole nests, 7 of which were reused for second broods, for a total of 83 nesting attempts. I estimated that nearly 20% of the oriole breeding population were subadult, or second-year orioles, which is extremely rare for this species. Oriole breeding pairs were found in high densities and may be at their highest level at the study sites since the 1970s. Fifty-nine percent of oriole nests fledged, and 37% failed. Six nests produced Bronzed Cowbird (Molothrus aeneus) fledglings. Vegetation analysis suggests that orioles prefer the tallest trees at the sites in which to place their nests. A greater number of fallen logs near the nest was also a predictor of nest sites, which suggests that orioles prefer scattered woodlands, but also that many of the forests probably continue to shift to a more open, thorn-scrub climax stage. I monitored 28 Northern Beardless-Tyrannulet nests, which were restricted to a smaller number of study tracts than Altamira Orioles. Historical records are lacking for Northern Beardless-Tyrannulets at these sites, but my surveys indicated that there were similar seasonal numbers of tyrannulets at some of the study sites as there were during 1996-1998. Forty-three percent of nests were successful and 57% failed. Higher abundances of epiphytic Spanish moss (Bromeliaceae: Tillandsia usneoides) and ball moss (Bromeliaceae: Tillandsia recurvata) were the most important predictors of nest sites. The continued existence of these two species in South Texas will depend upon the preservation of tall forests, and in the case of the tyrannulet, forests rich in Tillandsia epiphytes.
26

Parasite-host interactions in an arctic goose colony

Harriman, Vanessa Brooke 02 January 2007
The arctic is currently experiencing some of the greatest rates of warming. Newly emerging diseases in the arctic are of particular interest due to the implications these may have at southern latitudes if temperatures continue to rise around the globe. It is important to document changes in pathogen populations, such as alterations in range, virulence, prevalence, and abundance, and the effect these may have on their host populations. Parasites influence the reproductive success of their hosts in some cases. Studies on impacts of ectoparasites on avian reproductive success have generally been focused on species with altricial young. I studied the abundance of an apparently newly emerging nest-parasite and the effects of this parasite on Rosss (<i>Chen rossii</i>) and lesser snow goose (<i>Chen caerulescens caerulescens</i>) reproductive success in the Karrak Lake goose colony, Nunavut, Canada from 2001 to 2004. <p>The nest parasite, identified as the flea <i>Ceratophyllus vagabundus vagabundus</i>, was associated with goose eggs covered with spots of blood. The proportion of goose egg-shells covered by blood was positively correlated with flea abundance in the nest. This relationship allowed the use egg blood-coverage as an index of flea abundance for remaining analyses. Flea abundance in goose nests was associated with variables associated with the host and the hosts habitat. I used general linear models in conjunction with Akaikes information criterion (AIC) to determine which factors were most important in influencing flea abundance in goose nests. The most parsimonious model to explain the relationship between egg blood coverage and flea abundance in goose nests included goose clutch size, age of nest bowl (new vs. old), history of nesting by geese on a specific plot within the colony, habitat within 0.5m of nest, and year. The best predictor of flea abundance was the age of the nest bowl, with nest bowls re-used by geese containing more fleas than new bowls. This relationship was expected as fleas over-wintered in goose nests at the Karrak Lake colony.<p> Logistic regression and AIC were used to determine whether egg blood-coverage was an important variable influencing nest success. All top five models included blood-coverage. Goose nest success was negatively influenced by fleas in most years. There was a threshold of egg blood-coverage at which nest success was affected, and this threshold varied, with >20% blood indicating a significant decline in nest success in two years, and >5% blood-coverage indicating a decrease in nest success in one year. To my knowledge, this is the first study that has examined the parasites of avian nests in an arctic ecosystem and was also the first to investigate the effect of nest parasites on birds with precocial young. More research is needed to determine what factors limit this flea population and whether fleas may become a regulating factor for geese in the Karrak Lake colony.
27

Parasite-host interactions in an arctic goose colony

Harriman, Vanessa Brooke 02 January 2007 (has links)
The arctic is currently experiencing some of the greatest rates of warming. Newly emerging diseases in the arctic are of particular interest due to the implications these may have at southern latitudes if temperatures continue to rise around the globe. It is important to document changes in pathogen populations, such as alterations in range, virulence, prevalence, and abundance, and the effect these may have on their host populations. Parasites influence the reproductive success of their hosts in some cases. Studies on impacts of ectoparasites on avian reproductive success have generally been focused on species with altricial young. I studied the abundance of an apparently newly emerging nest-parasite and the effects of this parasite on Rosss (<i>Chen rossii</i>) and lesser snow goose (<i>Chen caerulescens caerulescens</i>) reproductive success in the Karrak Lake goose colony, Nunavut, Canada from 2001 to 2004. <p>The nest parasite, identified as the flea <i>Ceratophyllus vagabundus vagabundus</i>, was associated with goose eggs covered with spots of blood. The proportion of goose egg-shells covered by blood was positively correlated with flea abundance in the nest. This relationship allowed the use egg blood-coverage as an index of flea abundance for remaining analyses. Flea abundance in goose nests was associated with variables associated with the host and the hosts habitat. I used general linear models in conjunction with Akaikes information criterion (AIC) to determine which factors were most important in influencing flea abundance in goose nests. The most parsimonious model to explain the relationship between egg blood coverage and flea abundance in goose nests included goose clutch size, age of nest bowl (new vs. old), history of nesting by geese on a specific plot within the colony, habitat within 0.5m of nest, and year. The best predictor of flea abundance was the age of the nest bowl, with nest bowls re-used by geese containing more fleas than new bowls. This relationship was expected as fleas over-wintered in goose nests at the Karrak Lake colony.<p> Logistic regression and AIC were used to determine whether egg blood-coverage was an important variable influencing nest success. All top five models included blood-coverage. Goose nest success was negatively influenced by fleas in most years. There was a threshold of egg blood-coverage at which nest success was affected, and this threshold varied, with >20% blood indicating a significant decline in nest success in two years, and >5% blood-coverage indicating a decrease in nest success in one year. To my knowledge, this is the first study that has examined the parasites of avian nests in an arctic ecosystem and was also the first to investigate the effect of nest parasites on birds with precocial young. More research is needed to determine what factors limit this flea population and whether fleas may become a regulating factor for geese in the Karrak Lake colony.
28

Breeding biology and habitat associations of the Altamira Oriole and Northern Beardless-Tyrannulet in the Lower Rio Grande Valley, Texas

Werner, Scott Michael 15 November 2004 (has links)
I studied the breeding biology and nesting ecology of the Altamira Oriole (Icterus gularis) and Northern Beardless-Tyrannulet (Camptostoma imberbe), two songbirds inhabiting remnant tracts of Tamaulipan brushland of the Lower Rio Grande Valley, Texas during 2002-2003. I found 76 active oriole nests, 7 of which were reused for second broods, for a total of 83 nesting attempts. I estimated that nearly 20% of the oriole breeding population were subadult, or second-year orioles, which is extremely rare for this species. Oriole breeding pairs were found in high densities and may be at their highest level at the study sites since the 1970s. Fifty-nine percent of oriole nests fledged, and 37% failed. Six nests produced Bronzed Cowbird (Molothrus aeneus) fledglings. Vegetation analysis suggests that orioles prefer the tallest trees at the sites in which to place their nests. A greater number of fallen logs near the nest was also a predictor of nest sites, which suggests that orioles prefer scattered woodlands, but also that many of the forests probably continue to shift to a more open, thorn-scrub climax stage. I monitored 28 Northern Beardless-Tyrannulet nests, which were restricted to a smaller number of study tracts than Altamira Orioles. Historical records are lacking for Northern Beardless-Tyrannulets at these sites, but my surveys indicated that there were similar seasonal numbers of tyrannulets at some of the study sites as there were during 1996-1998. Forty-three percent of nests were successful and 57% failed. Higher abundances of epiphytic Spanish moss (Bromeliaceae: Tillandsia usneoides) and ball moss (Bromeliaceae: Tillandsia recurvata) were the most important predictors of nest sites. The continued existence of these two species in South Texas will depend upon the preservation of tall forests, and in the case of the tyrannulet, forests rich in Tillandsia epiphytes.
29

Common Raven Density and Greater Sage-Grouse Nesting Success in Southern Wyoming: Potential Conservation and Management Implications

Dinkins, Jonathan B 01 August 2013 (has links)
My research was focused on greater sage-grouse (Centrocercus urophasianus; hereafter "sage-grouse") nest-site selection, nest success, and hen survival in relation to avian predators. The trade-off between using habitat and avoiding predators is a common decision for prey species including sage-grouse. In Chapter 2, I compared avian predator densities at sage-grouse nest and brood locations to random locations. Sage-grouse were located where densities of small, medium, and large avian predators were 65-68% less than random locations. The effects of anthropogenic and landscape features on habitat use of sage-grouse hens have not been evaluated relative to avian predator densities. In Chapter 3, I compared anthropogenic and landscape features and avian predator densities among sage-grouse locations (nest, early-brood, late-brood) and random locations. I found sage-grouse hens chose locations with lower avian predator densities compared to random locations, and selected locations farther away from anthropogenic and landscape features. Depredation of sage-grouse nests can be an influential factor limiting their productivity. Predator removal has been simultaneously proposed and criticized as a potential mitigation measure for low reproductive rates of sage-grouse. In Chapter 4, I hypothesized that sage-grouse nest success would be greater in areas where Wildlife Services lowered common raven (Corvus corax: hereafter "raven") density. I found that Wildlife Services decreased raven density by 61% during 2008-2011 but I did not detect a direct improvement to sage-grouse nest success. However, sage-grouse nest success was 22% when ravens were detected within 550 m of a sage-grouse nest and 41% when no raven was detected within 550 m. In Chapter 5, I assessed interactive effects of corvid densities relative to anthropogenic and landscape features on sage-grouse nest success. I found that sage-grouse nest success was positively correlated with rugged habitat. Survival of breeding-age birds is the most important demographic parameter driving sage-grouse abundance. In Chapter 6, I evaluated the effect of raptor densities, proximity to anthropogenic and landscape features, and hen behavior on survival of sage-grouse hens. I found that sage-grouse hen survival was negatively correlated with golden eagle (Aquila chrysaetos) density, proximity to anthropogenic and landscape features, and hen parental investment (nesting and brood-rearing).
30

Behavioral and reproductive consequences of predator activity to grassland birds

Thieme, Jennifer Lee 20 October 2011 (has links)
No description available.

Page generated in 0.4701 seconds