• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wind –induced Pressure Quantification on Gable Roof Flush-Mounted Solar Panels Systems

Yakoub, Haisam 15 March 2019 (has links)
Abstract Photovoltaic (PV) solar panels are solar energy collection systems with increasing terrestrial and roof applications reported worldwide. If the terrestrial mounting does not require specific wind resistance verifications, installing them on top of flat and gable roofs implies a drastic change of the roofing systems geometry, thus a re-evaluation of the wind-induced pressure is necessary. Among the roof top applications, provisions exist for the flat roofs mounted solar panels, however, design recommendations for wind-induced loadings on PV solar panels arrays flush-mounted on gable roofs are not fully developed in current wind loading standards (SEAOC PV2-2012) and building codes (ASCE 07, NBCC 2015), in spite of the numerous applications on residential and agricultural buildings, primarily due to the limited research investigating this topic. The current dissertation employs CFD k-ɛ and LE (Large Eddy) simulations for analyzing the effects of wind acting on solar panels flush-mounted on gable roofs, considering the influence of several parameters such as: the slope of the gable roof, the wind directions, the spaces between the adjacent solar panel arrays and the clearance between the roof surface and the solar panels. A comprehensive database of solar panels with different installation parameters subjected to wind speeds were developed under the current research project. The database includes detailed distribution of wind-induced pressure coefficients for the three parallel surfaces constituting the roof-solar panels systems: the top and bottom surfaces of the panels, and the roof surface under the panels, which represents a novel approach in investigating and clarifying the wind effects on solar panels. This approach also provides in detail the variation of the pressure coefficients on the three surfaces, due to the change of installation conditions (roof slope, arrays spacing, roof clearance) and wind parameters (wind speed and wind direction). As an original contribution to the existing knowledge, this thesis found that the installation of solar arrays on gable roofs, redistributes the wind-induced pressure on both sides of the roof windward and leeward, resulting in total horizontal wind-induced pressures on the entire roof lower than that registered on the corresponding roof without solar panels. In addition, dominant resultant pressure coefficients on solar panels concluded to be lower than for the roof without panels. When the roof clearance increases, total average pressure coefficients on the roof supporting the panels decreases on both, windward and leeward sides of the roof. Moreover, when the roof clearance increases, the pressures in the cavity decrease significantly on both windward and leeward sides of the roof, which could impact the requirements for installing and fixing such panels on gable roofs. For example, for 10” clearance the flush-mounted solar panels were subject to pressure instead of suction. Similarly, when panel array spacing increases, the magnitude of the net mean pressure coefficients on the roof surface under the solar panels further decreases for all wind directions investigated.
2

The Influence of Nozzle Spacing and Diameter on the Acoustic Emissions of Closely Spaced Supersonic Jet Arrays

Coltrin, Ian S. 02 February 2012 (has links) (PDF)
The acoustic emissions from supersonic jets represent an area of significant research needs; not only in the field of aero-acoustics, but in industry as well where high pressure let down processes have been known to cause acoustically induced vibrations. A common method to reduce the acoustic emissions of such processes involves dividing the single larger supersonic flow into several smaller ones. Though this is common practice, there is not yet a current model which describes the reduction of acoustic emissions from an array of smaller supersonic jets. Current research which studies supersonic jet arrays are mainly focused on the effects of screech. Though screech is important, due to its high amplitude acoustic pressure, this research focuses on the overall acoustic emissions radiated from supersonic jet arrays which can cause severe acoustic loadings. This research investigated the acoustic emissions and shock formations from several eight by eight arrays of axisymmetric jet experimentally. The array nozzle diameters investigated ranged from 1/8 inch to 1/4 inch and the spacing over diameter ratio ranged from 1.44 to 3. The net pressure ratios investigated ranged from 2 to 24. Results revealed a strong correlation between the acoustic emissions and the shock formations of the flow. Up until a critical net pressure ratio, the overall sound pressure levels were comparable to that of a single jet within an array. At net pressure ratios beyond the critical the overall sound pressure levels transitioned to higher decibel levels; equivalent to a single jet with an equivalent exit area of an entire array. Also, the characteristic acoustic frequency emitted from a nozzle array remained ultrasonic (above 20 kHz) at lower net pressure ratios and then shifted to audible levels (between 20 Hz to 20 kHz) at net pressure ratios beyond the critical. Also, before the critical net pressure ratio the shock cells from the jets within the array remained unmerged, but at net pressure ratios beyond the critical the shock cells merged and formed lattices of weak oblique shocks at first and then strong oblique shocks as the net pressure ratio continued to increase. The critical net pressure ratio was investigated by non-dimensional analysis. The non-dimensional analysis revealed that the critical net pressure ratio was a strong linear function of the spacing over diameter ratio. A linear model was derived which is able to predict the critical net pressure ratio, and in turn, predict a critical shift in the acoustic emissions of a nozzle array.

Page generated in 0.0738 seconds