• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A SYSTEMATIC STUDY OF SPARSE DEEP LEARNING WITH DIFFERENT PENALTIES

Xinlin Tao (13143465) 25 April 2023 (has links)
<p>Deep learning has been the driving force behind many successful data science achievements. However, the deep neural network (DNN) that forms the basis of deep learning is</p> <p>often over-parameterized, leading to training, prediction, and interpretation challenges. To</p> <p>address this issue, it is common practice to apply an appropriate penalty to each connection</p> <p>weight, limiting its magnitude. This approach is equivalent to imposing a prior distribution</p> <p>on each connection weight from a Bayesian perspective. This project offers a systematic investigation into the selection of the penalty function or prior distribution. Specifically, under</p> <p>the general theoretical framework of posterior consistency, we prove that consistent sparse</p> <p>deep learning can be achieved with a variety of penalty functions or prior distributions.</p> <p>Examples include amenable regularization penalties (such as MCP and SCAD), spike-and?slab priors (such as mixture Gaussian distribution and mixture Laplace distribution), and</p> <p>polynomial decayed priors (such as the student-t distribution). Our theory is supported by</p> <p>numerical results.</p> <p><br></p>
2

Network compression via network memory: realization principles and coding algorithms

Sardari, Mohsen 13 January 2014 (has links)
The objective of this dissertation is to investigate both the theoretical and practical aspects of redundancy elimination methods in data networks. Redundancy elimination provides a powerful technique to improve the efficiency of network links in the face of redundant data. In this work, the concept of network compression is introduced to address the redundancy elimination problem. Network compression aspires to exploit the statistical correlation in data to better suppress redundancy. In a nutshell, network compression enables memorization of data packets in some nodes in the network. These nodes can learn the statistics of the information source generating the packets which can then be used toward reducing the length of codewords describing the packets emitted by the source. Memory elements facilitate the compression of individual packets using the side-information obtained from memorized data which is called ``memory-assisted compression''. Network compression improves upon de-duplication methods that only remove duplicate strings from flows. The first part of the work includes the design and analysis of practical algorithms for memory-assisted compression. These algorithms are designed based on the theoretical foundation proposed in our group by Beirami et al. The performance of these algorithms are compared to the existing compression techniques when the algorithms are tested on the real Internet traffic traces. Then, novel clustering techniques are proposed which can identify various information sources and apply the compression accordingly. This approach results in superior performance for memory-assisted compression when the input data comprises sequences generated by various and unrelated information sources. In the second part of the work the application of memory-assisted compression in wired networks is investigated. In particular, networks with random and power-law graphs are studied. Memory-assisted compression is applied in these graphs and the routing problem for compressed flows is addressed. Furthermore, the network-wide gain of the memorization is defined and its scaling behavior versus the number of memory nodes is characterized. In particular, through our analysis on these graphs, we show that non-vanishing network-wide gain of memorization is obtained even when the number of memory units is a tiny fraction of the total number of nodes in the network. In the third part of the work the application of memory-assisted compression in wireless networks is studied. For wireless networks, a novel network compression approach via memory-enabled helpers is proposed. Helpers provide side-information that is obtained via overhearing. The performance of network compression in wireless networks is characterized and the following benefits are demonstrated: offloading the wireless gateway, increasing the maximum number of mobile nodes served by the gateway, reducing the average packet delay, and improving the overall throughput in the network. Furthermore, the effect of wireless channel loss on the performance of the network compression scheme is studied. Finally, the performance of memory-assisted compression working in tandem with de-duplication is investigated and simulation results on real data traces from wireless users are provided.
3

Unraveling the Structure and Assessing the Quality of Protein Interaction Networks with Power Graph Analysis

Royer, Loic 12 December 2017 (has links) (PDF)
Molecular biology has entered an era of systematic and automated experimentation. High-throughput techniques have moved biology from small-scale experiments focused on specific genes and proteins to genome and proteome-wide screens. One result of this endeavor is the compilation of complex networks of interacting proteins. Molecular biologists hope to understand life's complex molecular machines by studying these networks. This thesis addresses tree open problems centered upon their analysis and quality assessment. First, we introduce power graph analysis as a novel approach to the representation and visualization of biological networks. Power graphs are a graph theoretic approach to lossless and compact representation of complex networks. It groups edges into cliques and bicliques, and nodes into a neighborhood hierarchy. We demonstrate power graph analysis on five examples, and show its advantages over traditional network representations. Moreover, we evaluate the algorithm performance on a benchmark, test the robustness of the algorithm to noise, and measure its empirical time complexity at O (e1.71)- sub-quadratic in the number of edges e. Second, we tackle the difficult and controversial problem of data quality in protein interaction networks. We propose a novel measure for accuracy and completeness of genome-wide protein interaction networks based on network compressibility. We validate this new measure by i) verifying the detrimental effect of false positives and false negatives, ii) showing that gold standard networks are highly compressible, iii) showing that authors' choice of confidence thresholds is consistent with high network compressibility, iv) presenting evidence that compressibility is correlated with co-expression, co-localization and shared function, v) showing that complete and accurate networks of complex systems in other domains exhibit similar levels of compressibility than current high quality interactomes. Third, we apply power graph analysis to networks derived from text-mining as well to gene expression microarray data. In particular, we present i) the network-based analysis of genome-wide expression profiles of the neuroectodermal conversion of mesenchymal stem cells. ii) the analysis of regulatory modules in a rare mitochondrial cytopathy: emph{Mitochondrial Encephalomyopathy, Lactic acidosis, and Stroke-like episodes} (MELAS), and iii) we investigate the biochemical causes behind the enhanced biocompatibility of tantalum compared with titanium.
4

Unraveling the Structure and Assessing the Quality of Protein Interaction Networks with Power Graph Analysis

Royer, Loic 11 October 2010 (has links)
Molecular biology has entered an era of systematic and automated experimentation. High-throughput techniques have moved biology from small-scale experiments focused on specific genes and proteins to genome and proteome-wide screens. One result of this endeavor is the compilation of complex networks of interacting proteins. Molecular biologists hope to understand life's complex molecular machines by studying these networks. This thesis addresses tree open problems centered upon their analysis and quality assessment. First, we introduce power graph analysis as a novel approach to the representation and visualization of biological networks. Power graphs are a graph theoretic approach to lossless and compact representation of complex networks. It groups edges into cliques and bicliques, and nodes into a neighborhood hierarchy. We demonstrate power graph analysis on five examples, and show its advantages over traditional network representations. Moreover, we evaluate the algorithm performance on a benchmark, test the robustness of the algorithm to noise, and measure its empirical time complexity at O (e1.71)- sub-quadratic in the number of edges e. Second, we tackle the difficult and controversial problem of data quality in protein interaction networks. We propose a novel measure for accuracy and completeness of genome-wide protein interaction networks based on network compressibility. We validate this new measure by i) verifying the detrimental effect of false positives and false negatives, ii) showing that gold standard networks are highly compressible, iii) showing that authors' choice of confidence thresholds is consistent with high network compressibility, iv) presenting evidence that compressibility is correlated with co-expression, co-localization and shared function, v) showing that complete and accurate networks of complex systems in other domains exhibit similar levels of compressibility than current high quality interactomes. Third, we apply power graph analysis to networks derived from text-mining as well to gene expression microarray data. In particular, we present i) the network-based analysis of genome-wide expression profiles of the neuroectodermal conversion of mesenchymal stem cells. ii) the analysis of regulatory modules in a rare mitochondrial cytopathy: emph{Mitochondrial Encephalomyopathy, Lactic acidosis, and Stroke-like episodes} (MELAS), and iii) we investigate the biochemical causes behind the enhanced biocompatibility of tantalum compared with titanium.

Page generated in 0.0825 seconds